题意:平面上有n个点每个点都有一个坐标,现在要在这些点之间修路,使全部点连通,修路有两种方式,费用也不同,直接在两点间修建,费用为两点间欧几里得距离的平方,或直接购买已经连通的连通块,都有对应的费用,求最小费用,注意输出格式,稍不注意就是wrong answer
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define Min(a,b) a<b?a:b
using namespace std;
int n,q;
const int maxn = 1010;
int f[maxn];
struct point
{
int x,y;
}pt[1001];
struct Tc
{
int num,price;
int Set[maxn];
}tc[9];
struct edge
{
int u,v,w;
}e[maxn*maxn];
int cnt;
void add(int a,int b,int dist)
{
e[cnt].u=a;
e[cnt].v=b;
e[cnt++].w=dist;
}
int dist(int a,int b)
{
return (pt[a].x-pt[b].x)*(pt[a].x-pt[b].x)+(pt[a].y-pt[b].y)*(pt[a].y-pt[b].y);
}
int find(int x)
{
return f[x]==x?x:f[x]=find(f[x]);
}
bool cmp(edge a,edge b)
{
return a.w<b.w;
}
int MST()
{
int ans=0,num=0;
for(int i=0;i<cnt;i++)
{
int x=find(e[i].u);
int y=find(e[i].v);
if(x!=y)
{
f[x]=y;
num++;
ans+=e[i].w;
}
if(num>=n-1)break;
}
return ans;
}
int main()
{
int t,fir=1;;
long long ans;
scanf("%d",&t);
while(t--)
{
cnt=0;
ans=(1<<30);
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++)f[i]=i;
for(int i=0;i<q;i++)
{
int num,price;
scanf("%d",&tc[i].num);
scanf("%d",&tc[i].price);
for(int j=0;j<tc[i].num;j++)
scanf("%d",&tc[i].Set[j]);
}
for(int i=1;i<=n;i++)
scanf("%d%d",&pt[i].x,&pt[i].y);
for(int i=1;i<=n-1;i++)
for(int j=i+1;j<=n;j++)
{
int d=dist(i,j);
add(i,j,d);
}
sort(e,e+cnt,cmp);
for(int i=0;i<(1<<q);i++)//空集 i =0 ,不购买 ,直接生成最小生成树
{
int d=0;
for(int j=1;j<=n;j++)f[j]=j;
for(int j=0;j<q;j++)
{
if(i&(1<<j))
{
d+=tc[j].price;
for(int k=1;k<tc[j].num;k++)
{
int xx=find(tc[j].Set[0]);//将枚举边集加入到生成树的集合中
int yy = find(tc[j].Set[k]);
f[xx]=yy;
}
}
}
int xxx=MST();
ans = Min(ans,(long long)d+xxx);
}
printf("%lld\n",ans);
if(t)printf("\n");
}
}