1.1机器学习的兴趣
关键词:计算机视觉 机器学习 数学 数据
1.2机器学习的重要性
机器学习包括:基础理论和算法
机器学习可以处理重复任务 高效的读取数据学习数据的特征找到数据的模式,这称为机器学习或者模式识别。
机器学习功能:鉴别垃圾邮件、用图像进行人脸识别、电商网站的推荐功能
计算机理论的发展的两点:具备了能收集/处理大量数据的环境 促进了机器学习的发展
处理数据:GPU进行数值计算 Hadoop Spark之类的分布式技术逐渐成熟
1.3机器学习的算法
机器学习常见任务(机器学习算法):回归 分类 聚类
回归:在处理连续数据如时间序列数据时使用的技术 即进行预测 还需要收集其他影响数据
分类:两个类别 二分类 三个及其以上 多分类 数字识别属于多分类
聚类:与分类的区别是带不带标签,标签(正确答案数据)
有标签的学习叫做有监督学习 无标签的学习叫做无监督学习
1.4数学与编程
关键词:概率统计 微分 线性代数