【论文回顾】Prior Convictions: Black-Box Adversarial Attacks with Bandits and Priors

Paper notes:

this paper focused on black-box and untargeted threat model.

the attack problem:

pre-requsite: loss funtion L(x,y), distance metric l-p norm.

non-convexity but well solved by previous attack projected gradient descent PGD.

PGD:

iterative, given input x, correct label y, run k steps with x0=x

description in paper: "ΠS is the projection onto the set S, Bp(x′,ε′) is the lp ball of radius ε′ around x′, η is the step size, and ∂U is the boundary of a set U.Also, as is standard in continuous optimization, we make sl be the projection of the gradient ∇xL(xl−1,y) at xl−1 onto the unit lp ball. This way we ensure that sl corresponds to the unit lp-norm vector that has the largest inner product with ∇xL(xl−1,y). (Note that, in the case of the l2-norm, sl is simply the normalized gradient but in the case of, e.g., the l∞-norm, sl corresponds to the sign vector, sgn (∇xL(xl−1, y)) of the gradient.)"

in black-box setting can also estimate the directional derivative 

and then construct an estimate of gradient

using PGD on this estimated gradient:

ZOO first used this method but high query complexity proportiinal to dimension.

then imperfet gradient estimators also enough generate adv examples.

(owing to draft save problem, the following part is omitted much)

time-dependent prior:

data-dependent prior:

"whenever two coordinates (i, j) and (k, l) of ∇xL(x, y) are close, we expect ∇xL(x, y)ij ≈ ∇xL(x, y)kl too"

using bandit optimization approach

Strengths:

1.prove the optimality of a standard least-squares estimator.

2.consider prior knowledge time-dependent and data-dependent prior

3.using bandit optimization approach to overperform

Detailed comments, possible improvements, or related ideas:

1. any other prior knowledge useful to gradient estimator

2. any other better method for integrating priors

3. how defense optimization-based black-box attack

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值