题目分析
状态压缩通常用来处理那些状态很多导致不能容易表达出来,于是需要通过压缩状态进行表示,又利用比如位运算处理一些东西,很容易将结果求出来。我的第一道状态压缩题,注释写的很详细。
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int MOD = 100000000;
int M,N,top = 0;
int state[600],num[110];
int dp[20][600];
int cur[20];
inline bool ok(int x){ //判断是否有相邻1
if(x&x<<1) return 0;
return 1;
}
void init(){ //将所有能放的状态全部存储进来
top = 0;
int total = 1<<N;
for(int i = 0; i < total; ++i)
if(ok(i)) state[++top] = i;
}
inline bool fit(int x,int k){ //判断是否与当前状态冲突
if(x&cur[k]) return 0;
return 1;
}
int main(){
while(scanf("%d%d", &M, &N) != EOF){
init();
memset(dp, 0, sizeof(dp));
for(int i = 1; i <= M; i++){
cur[i] = 0;
int num;
for(int j = 1; j <= N; j++){
scanf("%d", &num);
if(num == 0) cur[i] += (1<<(N-j)); //cur中存放不能放的位置
}
}
for(int i = 1; i <= top; i++) //将第一行能放的状态找出来
if(fit(state[i], 1)) dp[1][i] = 1;
for(int i = 2; i <= M; i++){
for(int k = 1; k <= top; ++k){
if(!fit(state[k], i)) continue; //当前放的位置与cur冲突
for(int j = 1; j <= top; j++){
if(!fit(state[j], i-1)) continue; //判断上一行的这个位置能否放
if(state[k]&state[j]) continue; //判断当前行与上一行是否冲突
dp[i][k] = (dp[i][k] + dp[i-1][j])%MOD;
}
}
}
int ans = 0;
for(int i = 1; i <= top; i++)
ans = (ans+dp[M][i])%MOD;
printf("%d\n", ans);
}
return 0;
}