题目分析
这道题给出N头牛,F种食物,D中饮料,每头牛只能对应特定的饮料和食物,我们要求出最多的牛都能得到对应的饮料和食物,并且饮料和食物不能重合。我想网络流算法即使抄模板大家也会写,但是本题建图同样是一个很大的问题,想了半天无果。。。。果然是弱弱!!
然后看了一下题解,本题建图很巧妙,不怎么好想,建图过程是这样的,建立一个源点和一个汇点,源点指向食物,食物指向牛,牛指向饮料,饮料指向汇点,但是这样还有问题,这样会使流量计算过大,因为每头牛只需要一对饮料和食物就可以了,于是我们还需要建立牛到牛的单相边,这样才能保证建图是正确的。对于邻接矩阵来说没有多大问题,但是对于邻接表存图就有可能存重复边,这样还是会使流量变大,因此我们需要用set进行判重,这样才能保证解法是正确的。果然,图论的题目还是难在建图上面!!
#include <set>
#include <queue>
#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 505;
const int INF = 0x3f3f3f3f;
#define pb push_back
struct Edge{ int to, cap, rev; };
int iter[maxn], level[maxn];
vector <Edge> G[maxn];
set <pair <int, int> > S1, S2;
void addedge(int from, int to, int cap){
G[from].pb((Edge){to, cap, G[to].size()});
G[to].pb((Edge){from, 0, G[from].size()-1});
}
void bfs(int s){
memset(level, -1, sizeof(level));
level[s] = 0;
queue <int> que;
que.push(s);
while(!que.empty()){
int v = que.front(); que.pop();
for(int i = 0; i < G[v].size(); i++){
Edge &e = G[v][i];
if(e.cap > 0 && level[e.to] < 0){
level[e.to] = level[v] + 1;
que.push(e.to);
}
}
}
}
int dfs(int v, int t,int f){
if(v == t) return f;
for(int &i = iter[v]; i < G[v].size(); i++){
Edge &e = G[v][i];
if(e.cap > 0 && level[v] < level[e.to]){
int d = dfs(e.to, t, min(f, e.cap));
if(d > 0){
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
int max_flow(int s,int t){
int flow = 0;
for(;;){
bfs(s);
if(level[t] < 0) return flow;
memset(iter, 0, sizeof(iter));
int f;
while((f = dfs(s, t, INF)) > 0){
flow += f;
}
}
}
int main(){
int N, F, D;
while(scanf("%d%d%d", &N, &F, &D) != EOF){
int f, d, x;
for(int i = 0; i < maxn; i++) G[i].clear();
S1.clear(), S2.clear();
for(int i = 1; i <= N; i++){
scanf("%d%d", &f, &d);
while(f--){
scanf("%d", &x);
if(!S1.count(make_pair(0, x))){
S1.insert(make_pair(0, x));
addedge(0, x, 1); //从源点到食物
}
addedge(x, i+100, 1); //从食物到牛
}
addedge(i+100, i+200, 1); //从牛到牛,是为了限制每个牛只能连一种食物和饮料
while(d--){
scanf("%d", &x);
addedge(i+200, x+300, 1); //从牛到饮料
if(!S2.count(make_pair(x+300, 500))){
S2.insert(make_pair(x+300, 500));
addedge(x+300, 500, 1); //从饮料到汇点
}
}
}
printf("%d\n", max_flow(0, 500));
}
return 0;
}