WOJ The Highest Peak(离线LCA+端点打tag)

题目分析

一眼望去赤裸裸的树链剖分,然而老年人早已经忘了树链剖分如何写了,然后这道题比赛的时候树链剖分会超时,还可能有爆栈。好吧,不纠结这么多了,看一下官方做法吧。这道题因为是一直插入最后求最高点就可以了。我们想一想对于线性序列来说如何要让某个区间增加一个数或者减少一个数我们怎么做。我们可以在区间头增加一个数,在区间尾减少一个数,然后把所有的插入处理完之后直接跑前缀和即可得出结果。这道题同样也是这样。我们利用离线LCA处理出公共祖先结点,然后我们就在2个叶子结点和公共祖先结点做相关操作。然后把所有的操作处理完,然后dfs一遍树即可。不懂的可以看代码。

#include <bits/stdc++.h>
using namespace std;
const int maxn = 5e5+100;

struct Edge{
    int to, next;
}e[maxn<<1];

int father[maxn][21], dep[maxn], head[maxn], tot;
long long sum[maxn];

void addedge(int from, int to){
    e[tot].to = to;
    e[tot].next = head[from];
    head[from] = tot++;
}

void dfs(int u, int fa){
    dep[u] = dep[fa] + 1;
    father[u][0] = fa;
    for(int i = 1; i <= 20; i++)
        father[u][i] = father[father[u][i-1]][i-1];
    for(int i = head[u]; i != -1; i = e[i].next){
        int v = e[i].to;
        if(v == fa) continue;
        dfs(v, u);
    }
}

int get_lca(int x, int y){
    if(dep[x] < dep[y]) swap(x, y);
    int temp = dep[x] - dep[y];
    for(int i = 20; i >= 0; i--)
        if((temp>>i)&1) x = father[x][i];
    if(x == y) return x;
    for(int i = 20; i >= 0; i--){
        if(father[x][i] != father[y][i]){
            x = father[x][i];
            y = father[y][i];
        }
    }
    return father[x][0];
}

void solve(int u, int fa){
    for(int i = head[u]; i != -1; i = e[i].next){
        int v = e[i].to;
        if(v == fa) continue;
        solve(v, u);
        sum[u] += sum[v];
    }
}

void init(){
    memset(head, -1, sizeof(head));
    memset(father, 0, sizeof(father));
    memset(sum, 0, sizeof(sum));
    tot = 0;
}

int main(){
    int n, m;
    while(scanf("%d%d", &n, &m) != EOF){
        init();
        int u, v, val;
        for(int i = 1; i < n; i++){
            scanf("%d%d", &u, &v);
            addedge(u, v);
            addedge(v, u);
        }
        dfs(1, 0);
        while(m--){
            scanf("%d%d%d", &u, &v, &val);
            int lca = get_lca(u, v);  //找祖先结点
            sum[u] += val;
            sum[v] += val;
            sum[lca] -= val;
            sum[father[lca][0]] -= val;  //这里把孩子得出的值向祖先递推时因为有2个孩子结点,这样就会多加一次,因此父亲的父亲需要做相关处理
        }
        solve(1, 0);
        int ans = 1;
        for(int i = 2; i <= n; i++)
            if(sum[i] > sum[ans]) ans = i;
        printf("%d %lld\n", ans, sum[ans]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值