
图像处理
文章平均质量分 72
chenbang110
学习是最快乐的事
展开
-
图像增强汇总
1、 图像增强技术包括1) 图像灰度变换方法2) 直方图修正方法3) 图像平滑处理4) 图像尖锐化处理5) 彩色处理技术2、 图像增强技术基本上分为两大类:频域处理法和时域处理法。3、 频域处理法的基础是卷积定理。它通过傅里叶变换改变频域,实现对图像的增强处理。4、 空域法就是直接对图像中的像素进转载 2012-04-26 18:03:06 · 2056 阅读 · 0 评论 -
【OpenCV】森林火灾检测-1
转载请注明出处:http://blog.csdn.net/xiaowei_cqu/article/details/7522467前段时间做了一个火灾检测的小程序,因为时间紧,实现的算法也简单。只用了两步处理:运动检测和颜色检测。日后还会再改进~运动检测其实就是检测背景,对背景建模然后提取前景中运动的物体作为候选火灾样本。尝试了两种简单的背景算法:高斯背景建模和背景相减,还是转载 2013-08-05 01:01:42 · 1833 阅读 · 0 评论 -
背景建模或前景检测(Background Generation And Foreground Detection) 一
转自:http://www.cnblogs.com/xrwang/archive/2010/02/21/ForegroundDetection.html作者:王先荣前言 在很多情况下,我们需要从一段视频或者一系列图片中找到感兴趣的目标,比如说当人进入已经打烊的超市时发出警报。为了达到这个目的,我们首先需要“学习”背景模型,然后将背景模型和当前图像进行比较,从而得到前景转载 2013-08-25 23:54:59 · 2423 阅读 · 0 评论 -
背景建模或前景检测(Background Generation And Foreground Detection) 二
转自:http://www.cnblogs.com/xrwang/archive/2010/03/27/BackgroundGenerationAndForegroundDetectionPhase2.html作者:王先荣 本文尝试对《学习OpenCV》中推荐的论文《Nonparametric Background Generation》进行翻译。由于我的英文水平很差转载 2013-08-25 23:55:50 · 2129 阅读 · 0 评论 -
背景建模或前景检测(Background Generation And Foreground Detection) 三
转自:http://www.cnblogs.com/xrwang/archive/2010/04/12/BackgroundGenerationAndForegroundDetectionPhase3.html作者:王先荣 在上一篇文章里,我尝试翻译了《Nonparametric Background Generation》,本文主要介绍以下内容:如何实现该论文的算法,如果利转载 2013-08-25 23:57:09 · 1905 阅读 · 0 评论 -
背景建模或前景检测(Background Generation And Foreground Detection) 五 ViBe
ViBe算法:ViBe - a powerful technique for background detection and subtraction in video sequences算法官网:http://www2.ulg.ac.be/telecom/research/vibe/描述:ViBe是一种像素级视频背景建模或前景检测的算法,效果优于所熟知的几种算法,对硬件内转载 2013-08-25 23:58:54 · 2177 阅读 · 0 评论 -
CV界的明星人物们(转载加补充)
http://www.bfcat.com/index.php/2013/07/cv-star/今天在cvchina论坛上看到的一篇帖子,总结了当前CV界最火的一些人。列举的比较全面了。bfcat还想补充几个,加在后面了。CV人物1:Jianbo Shi史建波毕业于UC Berkeley,导师是Jitendra Malik。其最有影响力的研究成果:图像分割。其于2000年在PAM转载 2013-08-13 16:41:09 · 2237 阅读 · 0 评论 -
景建模或前景检测(Background Generation And Foreground Detection) 四
转自:http://www.cnblogs.com/xrwang/archive/2012/04/24/MPCBBGM.html多阶编码本模型(Multi phase codebook model)作者:王先荣 注:这是2010年所写的文章,因为要发论文到杂志上的缘故,这篇文章放到博客几天便隐藏起来了,最近论文正是刊出,所以文章又重见天日了。您可以在后面的地址查看或者下转载 2013-08-25 23:58:12 · 1368 阅读 · 1 评论 -
背景建模或前景检测(Background Generation And Foreground Detection) 六 Emvisi2
Emvisi2: A background subtraction algorithm, robust to sudden light changes Making Background Subtraction Robust to Sudden Illumination ChangeEmvisi2 是由瑞士联邦理工学院计算机实验室提出的一种背景建模算法。转载 2013-08-25 23:59:28 · 1779 阅读 · 0 评论 -
以图搜图相关资料
声明:本文为笔者原创,转载请注明出处:blog.csdn.net/carson2005 基于内容的图片检索(Content Based Image Retrieval, CBIR),也有人称之为以图搜图,是一个很老的研究领域,它是利用机器学习、模式识别、计算机视觉等相关技术对图片的内容进行分析、检测、检索的一种应用。随着近年来模式识别与机器学习的快速发展,该领域又逐渐火热起来转载 2013-09-13 14:43:02 · 1662 阅读 · 0 评论 -
Retinex算法详解
http://blog.csdn.net/carson2005/article/details/9502053Retinex是一种常用的建立在科学实验和科学分析基础上的图像增强方法,它是Edwin.H.Land于1963年提出的。就跟Matlab是由Matrix和Laboratory合成的一样,Retinex也是由两个单词合成的一个词语,他们分别是retina 和cortex,即:视网转载 2013-08-10 09:16:46 · 2076 阅读 · 1 评论 -
图像分割理论
在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分一般称为目标或前景。为了辨识和分析目标,需要将有关区域分离提取出来,在次基础上对目标进一步利用,如进行特征提取和测量。图像分割就是指把图像分成各具特性区域并提取出感兴趣目标的技术过程。其中边缘检测就是图像分割的一部分。Hough变换:Hough变换是图像处理中从图像中识别几何形状的基本方法之一。Hought变换的基转载 2013-10-22 16:05:00 · 10881 阅读 · 1 评论 -
图像分割概述
图像分割是从图像处理到图像分析的关键技术。图像分割的种类和方法很多,有些分割算法可直接用于任何图像,而另一些算法只能适用于分割特殊类别的图像。有些算法需要先对图像进行粗分割,因为它们需要从图像中提取出来的信息。没有唯一的标准的方法。分割结果的好坏需要根据具体的场合要求衡量。早期的图像分割方法可以分为两大类。一类是边界方法,这种方法假设图像分割结果的某个子区域在原来图像中一定会有边缘存在;一转载 2013-10-22 16:09:13 · 1948 阅读 · 0 评论 -
医学图像分割综述
图像处理流程大致如下图所示:图像分割的定义:将一副图像g(x,y),其中0≤x≤Max_x,0≤y≤Max_y,进行分割就是将图像划分为满足如下条件的子区域:1.基于区域的分割方法:图像分割通常用到不同对象间特征的不连续性和同一对象内部特征的相似性。基于区域的算法则侧重于利用区域内特征的相似性。1.1阈值法:阈值分割是转载 2013-10-22 15:21:24 · 13062 阅读 · 1 评论 -
图像分割1,概述
图像分割之(一)概述zouxy09@qq.comhttp://blog.csdn.net/zouxy09 所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。我们先对目前主要的图像分割方法做个概述,后面再对个别方法做详细的了解和学习。1、基于阈转载 2013-10-22 14:28:43 · 1528 阅读 · 0 评论 -
自适应阈值分割之otsu算法
#include "opencv2/imgproc/imgproc.hpp"#include "opencv2/highgui/highgui.hpp"#include #include #define FLT_EPSILON 1.19209290E-07F // decimal constant//FLT_EPSILON the minimum positive number suc转载 2013-10-30 19:58:13 · 6800 阅读 · 0 评论 -
Bicubic Interpolation (双三次插值)
原作者:http://blog.csdn.net/spanzhang/archive/2007/08/29/1764517.aspx 张友邦在Wikipedia (http://en.wikipedia.org/wiki/Bicubic_interpolation) 上找到了bicubic的描述,不过它只给出了知道导数情况下的公式。后来在CSDN上找到了C语言的算法描述(http://t转载 2013-11-10 08:33:48 · 23569 阅读 · 1 评论 -
【OpenCV】森林火灾检测-2
转载请注明出处:http://blog.csdn.net/xiaowei_cqu/article/details/7523683有关火灾检测的几篇论文的算法小总结:An Early Fire-Detection Method Based on Image ProcessingThou-Ho (Chao-Ho) Chen, Ping-Hsueh Wu, and Yung-Ch转载 2013-08-05 01:03:16 · 1702 阅读 · 0 评论 -
【OpenCV】基于图像处理和模式识别的火灾检测方法
学期末一直忙考试,大作业,很久没来CSDN耕耘了。。。虽然考试都结束了,手头还是累积了不少活儿要补,不多写了,晒个小项目,之前一直做的,后来当做模式识别课程的大作业交了。大体框架如下:还是之前的火灾检测,但是在一些简单的颜色、运动检测的基础上增加了模式识别的方法。(其实并不需要这么多种方法,因为作业要求试验三种以上的方法)因为特征比较简单——SV转载 2013-08-05 09:17:56 · 3026 阅读 · 2 评论 -
颜色不变性算法及应用总结
http://blog.csdn.net/kobesdu/article/details/8276970颜色不变性定义:室外光线的彩色成分变化非常大,但人却能正确的感知场景中物体的颜色,并且在大部分情况下不依赖于环境照明的颜色,这种现象叫彩色不变性 成像设备在获取并记录图像时,只能获得场景或物体在不同光源下所呈现的颜色,而不是物体的固有颜色。而人类的视觉系统却具有一种重转载 2013-04-24 11:18:54 · 2882 阅读 · 1 评论 -
LibSVM学习(五)——分界线的输出
对于学习SVM人来说,要判断SVM效果,以图形的方式输出的分解线是最直观的。LibSVM自带了一个可视化的程序svm-toy,用来输出类之间的分界线。他是先把样本文件载入,然后进行训练,通过对每个像素点的坐标进行判断,看属于哪一类,就附上那类的颜色,从而使类与类之间形成分割线。我们这一节不讨论svm-toy怎么使用,因为这个是“傻瓜”式的,没什么好讨论的。这一节我们主要探讨怎么结合训练结果文件,自转载 2012-05-04 19:13:02 · 2304 阅读 · 0 评论 -
LibSVM学习(二)——第一次体验libSvm
1. 把LibSVM包解压到相应的目录(因为我只需要里面windows文件夹中的东东,我们也可以只把windows文件夹拷到相应的目录),比如C:\libsvm-3.12 2. 在电脑“开始”的“运行”中输入cmd,进入DOS环境。定位到C:\libsvm-3.12下,具体命令如下: C: (回车) cd C:\libsvm-3.12\w转载 2012-05-04 18:24:34 · 1227 阅读 · 0 评论 -
LibSVM学习(六)——easy.py和grid.py的使用
我们在“LibSVM学习(一)”中,讲到libSVM有一个tools文件夹,里面包含有四个python文件,是用来对参数优选的。其中,常用到的是easy.py和grid.py两个文件。其实,网上也有相应的说明,但很不系统,下面结合本人的经验,对使用方法做个说明。 这两个文件都要用python(可以在http://www.python.org上下载到,需要安装)和绘图工具gnuplo转载 2012-05-04 19:16:41 · 1524 阅读 · 0 评论 -
LibSVM学习(一)——初识LibSVM
LibSVM是台湾 林智仁(Chih-Jen Lin) 教授2001年开发的一套支持向量机的库,这套库运算速度还是挺快的,可以很方便的对数据做分类或回归。由于libSVM程序小,运用灵活,输入参数少,并且是开源的,易于扩展,因此成为目前国内应用最多的SVM的库。 这套库可以从http://www.csie.ntu.edu.tw/~cjlin/免费获得,目前已经发展到2.转载 2012-05-04 18:11:49 · 940 阅读 · 0 评论 -
LibSVM学习(四)——逐步深入LibSVM
其实,在之前上海交大模式分析与机器智能实验室对2.6版本的svm.cpp做了部分注解,(在哪里?google一下你就知道)。但是,这个注释只是针对代码而注释,整篇看下来,你会发现除了理解几个参数的含义,还是会对libsvm一头雾水。当然作为理解程序的辅助材料,还是有很大用处的。特别是,对几个结构体的说明,比较清楚。但是要清楚程序具体做了什么,还是要追踪程序中去。 由于svm涉转载 2012-05-04 19:11:46 · 963 阅读 · 1 评论 -
Surf算法学习心得(二)——源码简析
说明:作为初学者,我对于源代码也只是简单的分析,开始和(一)中一样都叫做源码分析,后来感觉自己分析的质量不太好,还是都改为源码简析吧,结合起(一)及后面的心得来看估计效果会好点,呵呵。只是希望对于即将要学习Surf算法的人有一定的帮助就行!对于一些介绍得不对的地方,也希望各位大虾能过指出,相互交流,共同进步!Surf算法源代码分析surf算法源代码分为两种文件,学过C/C++的都知转载 2012-05-07 09:44:58 · 2267 阅读 · 0 评论 -
yuv和yCbCr的差异
yuv和yCbCr的差异 一、和rgb之间换算公式的差异yuvrgbY'= 0.299*R' + 0.587*G' + 0.114*B'U'= -0.147*R' - 0.289*G' + 0.436*B' = 0.492*(B'- Y')V'= 0.615*R' - 0.515*G' - 0转载 2012-04-22 09:45:27 · 683 阅读 · 0 评论 -
SIFT算法学习心得
这篇文章主要介绍 SIFT 算法。希望通过对 SIFT 算法的总结来更加深入地了解“尺度不变特征变换”,除此之外,也加深来对 SURF 算法的理解。附件:SIFT—Scale Invariant Feature Transform1 SIFT 发展历程及主要思想SIFT算法由D.G.Lowe 1999年提出,2004年完善总结。后来Y.Ke将其描述子部分用PCA代替转载 2012-05-07 09:24:13 · 1488 阅读 · 0 评论 -
仿射变换
仿射变换(Affine Transformation或 Affine Map)是一种二维坐标到二维坐标之间的线性变换,它保持了二维图形的“平直性”(即:直线经过变换之后依然是直线)和“平行性”(即:二维图形之间的相对位置关系保持不变,平行线依然是平行线,且直线上点的位置顺序不变)。放射变换可以写为如下的形式:转载 2012-05-07 14:04:42 · 1108 阅读 · 0 评论 -
Surf算法学习心得(一)——算法原理
写在前面的话:Surf算法是对Sift算法的一种改进,主要是在算法的执行效率上,比Sift算法来讲运行更快!由于我也是初学者,刚刚才开始研究这个算法,然而网上对于Surf算法的资料又尤为极少,稍微介绍的明白一点的还是英文。所以在此想借这个机会把我所理解的部分介绍一下,对于后面准备学习Surf算法的朋友来说,希望有一点点的帮助!言归正传,心得大致包括几下几部分:1、算法原理;2、源码转载 2012-05-07 09:44:12 · 10117 阅读 · 6 评论 -
OpenCV:SURF算法浅析
引子: 课题需要SURF特征提取算法,在运动中提取摄像头图像中的特征点,并进行跟踪匹配,以此估计运动状态。开始找到了SIFT算法,SIFT特征提取具有极强的适应能力,但运算量稍大,后来就有了SURF特征提取算法,简化了计算量,保持了较高的性能,是性价比很不错的算法。开始并不知道OpenCV的存在,后来的后来发现OpenCV中已经有了SURF算法,感叹于技术发展之快(要知道SIFT是Low在2004转载 2012-05-08 10:50:13 · 1442 阅读 · 0 评论 -
Surf算法学习心得(三)——Demo分析
OpenCV Demo分析(find_obj.cpp)OpenCV2.1中有关于Surf算法的简单示例(1.1以上的版本都添加了这个算法),在路径:C:\Program Files\OpenCV2.1\samples\c下,名为find_obj.cpp,运行它可以直接观察到相应结果。为了便于介绍这个示例,简单做了如下修改(只是删掉一些代码,但是对于如何使用Surf算法没有影响)。转载 2012-05-08 10:41:06 · 4241 阅读 · 1 评论 -
SIFT特征详细描述
一、介绍特征的检测和匹配在许多计算机视觉应用中是一个重要的组成部分,例如无缝拼接,三维重建等。其中兴趣点特征是很重要的一类特征,而目前应用最广泛的兴趣点特征检测方法就是SIFT检测算法,该检测算法所得到的特征点不仅在位置上能够稳定识别,而且具有尺度不变性和旋转不变性。由于各大论坛以及该论文作者都只是给出matlab的实现算法,并未给出C++的版本,而且由于在SIFT的实现过程中有很多参数设转载 2012-05-12 15:20:02 · 18655 阅读 · 3 评论 -
几种经典的滤波算法
1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺转载 2012-06-05 11:02:15 · 2300 阅读 · 0 评论 -
神奇的图像处理算法
一、像素图生成向量图的算法数字时代早期的图片,分辨率很低。尤其是一些电子游戏的图片,放大后就是一个个像素方块。Depixelizing算法可以让低分辨率的像素图转化为高质量的向量图。二、黑白图片的着色算法让老照片自动变成彩色的算法。三、消除阴影的算法不留痕迹地去掉照片上某件东西的阴影的算法。四、HDR照片的算法转载 2012-06-14 09:29:53 · 1566 阅读 · 0 评论 -
图像颜色特征提取
颜色直方图是最常用的一种特征:颜色直方图是在许多图像检索系统中被广泛采用的颜色特征。它所描述的是不同色彩在整幅图像中所占的比例,而并不关心每种色彩所处的空间位置,即无法描述图像中的对象或物体。颜色直方图特别适于描述那些难以进行自动分割的图像。当然,颜色直方图可以是基于不同的颜色空间和坐标系。最常用的颜色空间是RGB颜色空间,原因在于大部分的数字图像都是用这种颜色空间表达的。然而,R转载 2012-07-07 16:52:42 · 17850 阅读 · 4 评论 -
Niblack二值化方法的实现
申明,本文非笔者原创,原文转载自:http://www.cnblogs.com/nani/archive/2012/12/12/2814324.html最近一直在研究图像分割技术,越研究觉得越有意思。这里所说的研究其实也只是研究别人论文然后自己实现一下而已罢了。。。图像分割就是把图像中的各个部分分开,能区分出哪里是前景,哪里是背景,如果前景和背景分别用0和1表示,那就是叫做转载 2013-11-10 08:41:07 · 2695 阅读 · 0 评论