
Deep Learning
文章平均质量分 84
chenbang110
学习是最快乐的事
展开
-
Deep Belief Networks资料汇总
毕设做的是DBNs的相关研究,翻过一些资料,在此做个汇总。 可以通过谷歌学术搜索来下载这些论文。 Arel, I., Rose, D. C. and Karnowski, T. P. Deep machine learning - a new frontier in artificial intelligence research. Computational Inte转载 2012-11-12 23:18:26 · 1757 阅读 · 0 评论 -
关于深度学习(Deep Learning) ....2004年
1.organize, interpret, evaluate, analyze, or synthesize information (rather than retrieve or reproduce isolated fragments, or repeatedly apply previously learned procedures);(深度学习是)组织、解释、评价、分析和综合信息转载 2012-11-12 23:40:39 · 917 阅读 · 0 评论 -
深度学习(Deep Learning)综述
Comments from Xinwei: 本文是从deeplearning网站上翻译的另一篇综述,主要简述了一些论文、算法已经工具箱。 深度学习是ML研究中的一个新的领域,它被引入到ML中使ML更接近于其原始的目标:AI。查看a brief introduction to Machine Learning for AI 和 an introduction to Deep Le转载 2012-11-12 23:32:59 · 1048 阅读 · 0 评论 -
深度学习(Deep Learning)算法简介
Comments from Xinwei: 最近的一个课题发展到与深度学习有联系,因此在高老师的建议下,我仔细看了下深度学习的基本概念,这篇综述翻译自http://deeplearning.net,与大家分享,有翻译不妥之处,烦请各位指正。 查看最新论文 Yoshua Bengio, Learning Deep Architectures for AI, Foundations转载 2012-11-12 23:30:54 · 1140 阅读 · 0 评论 -
Deep Learning Reading List
http://deeplearning.net/reading-list/ List of reading lists and survey papers: The monograph or review paper Learning Deep Architectures for AI (Foundations & Trends in Machine Learning, 2009)转载 2012-11-12 23:28:19 · 1201 阅读 · 0 评论 -
Deep learning的一些有用链接
deeplearning tutorials: http://deeplearning.net/tutorials/ http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf Restricted boltzmann machine: http://deeplearning.net/tutorial/rbm.html h转载 2012-11-12 23:26:12 · 928 阅读 · 0 评论 -
Deep Belief Network
为了更好的在下次讨论班讲述 DBN,特开此帖。主要是 介绍 DBN 的相关知识,做一份逻辑上完整的东西。参考 Hinton 的东西来讲吧: reading list RBM 相关 [1] 关于 Boltzmann machine 的 scholarwiki [2] Haykin 书上第 11 章 [3] Duda 书上第 7 章 [4] RBM 的 exponential fa转载 2012-11-12 23:21:27 · 4357 阅读 · 0 评论 -
Literatures on Deep Learning 关于Deep Learning的一些文章
Recently I engaged in studying Deep Learning, which was motivated by G. E. Hinton from University of Toronto in 2006. The striking paper was A FAST LEARNING ALGORITHM FOR DEEP BELIEF NETS in Neural Co转载 2012-11-12 23:12:26 · 1494 阅读 · 0 评论 -
机器学习——深度学习(Deep Learning)
Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得。 Key Words:有监督学习与无监督学习,分类、回归,密度估计、聚类,深度学习,Sparse DBN, 1. 有监督学习和无监督学习 给定一组数据(inpu转载 2012-11-12 23:42:52 · 1015 阅读 · 0 评论 -
神经网络发展史
机器学习(Machine Learning) 机器学习是人工智能(Artificial Intelligence)的核心。它和统计学有着密不可分的关系。作为对比,让我们先来看一看这两个领域的区别。 传统的统计学的特点: 低维数据;数据中有大量噪点(Noise);数据中没有复杂的结构,且所有结构均可以被简化为一个相对简单的模型;面临的主要问题是如何从数据中分辨出正确的结构转载 2012-11-12 23:24:28 · 12794 阅读 · 0 评论 -
无监督特征学习——Unsupervised feature learning and deep learning
无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training。本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning by Andrew转载 2012-11-21 21:30:37 · 1008 阅读 · 0 评论