归并排序(递归实现和迭代实现)

//首先是递归实现的方式
#include<stdio.h>

#define MAXSIZE 10

//实现归并,并把数据都放在list1里面
void merging(int *list1,int list1_size,int *list2,int list2_size)
{
	int i,j,k,m;
	i = j = k = 0;
	
	int temp[MAXSIZE];
	
	while(i<list1_size&&j<list2_size)
	{
		if(list1[i] < list2[j])
		{
			temp[k++] = list1[i++];
		}
		else 
		{
			temp[k++] = list2[j++];
		}
	}
	//如果有剩下的,那么说明就是它是比前面的数组都大的,直接加入就可以了
	while(i<list1_size)
	{
		temp[k++] = list1[i++];
	}
	while(j<list2_size)
	{
		temp[k++] =  list2[j++];
	}
	
	for(m=0; m<(list1_size + list2_size);m++)
	{
		list1[m] = temp[m];
	}
}
void MergeSort(int k[],int n)
{
	
	if(n>1)
	{
		int *list1 = k;			//定义一个指针变量,指向数组k的地址
		int list1_size = n/2;	//数组的长度分为本来数组长度的一半
		int *list2 = k +n/2;	//定义另外一个指针变量,指向数组k+n/2的地址
		int list2_size = n - list1_size;//长度为刚才总的减去刚才分去那一半
		
		MergeSort(list1,list1_size);	//调用数组本身,相当与递归,
		MergeSort(list2,list2_size);	//调用数组本身,相当与递归
		merging(list1,list1_size,list2,list2_size);
	}
	
	
	
}

int main(){
	int i,a[10] = {5,2,6,0,3,9,1,7,4.8};
	
	MergeSort(a,10);
	
	printf("排序后的结果是:");
	for(i=1; i<10; i++)
	{
		printf("%d",a[i]);
	}
	
	printf("\n\n");
	
	return 0;
	
}

//归并排序复杂度分析:一趟归并需要将待排序列中的所有记录
//扫描一遍,因此耗费时间为O(n),而由完全二叉树的深度可知,
//整个归并排序需要惊醒[log2n],因此,总的时间复杂度为
//O(nlogn),而且这是归并排序算法中最好、最坏平均的时间性能
//空间复杂度:由于归并过程中需要与原始记录序列同样数量级的
//存储空间去存放归并结果及递归深度为log2N的栈空间,因此空间
//复杂度为O(n+logN)
//也就是说,归并排序是一种比较占内存,但却效率高且稳定的算法


没有最好只有更好,下面介绍一种用迭代方式实现归并排序的算法:

非递归的方法,避免了递归时深度为log2N的栈空间,空间只是用到归并临时申请的跟原来数组一样大小的空间,并且在时间性能上也有一定的提升,因此,使用归并排序是,尽量考虑用非递归的方法。

#include<stdio.h>
#include<stdlib.h>
#define MAXSIZE 10

void MergeSort(int k[],int n)
{
	int i,next,left_min,left_max,right_min,right_max;
	//开辟一个与原来数组一样大小的空间用来存储用
	int *temp = (int *)malloc(n * sizeof(int));
	//逐级上升,第一次比较2个,第二次比较4个,第三次比较8个。。。
	for(i=1; i<n; i*=2)
	{
		//每次都从0开始,数组的头元素开始
		for(left_min=0; left_min<n-i; left_min = right_max)
		{
			right_min = left_max = left_min + i;
			right_max = left_max + i;
			//右边的下标最大值只能为n
			if(right_max>n)
			{
				right_max = n;
			}
			//next是用来标志temp数组下标的,由于每次数据都有返回到K,
			//故每次开始得重新置零
			next = 0;
			//如果左边的数据还没达到分割线且右边的数组没到达分割线,开始循环
			while(left_min<left_max&&right_min<right_max)
			{
				if(k[left_min] < k[right_min])
				{
					temp[next++] = k[left_min++];
					
				}
				else
				{
					temp[next++] = k[right_min++];
				}
			}
			//上面循环结束的条件有两个,如果是左边的游标尚未到达,那么需要把
			//数组接回去,可能会有疑问,那如果右边的没到达呢,其实模拟一下就可以
			//知道,如果右边没到达,那么说明右边的数据比较大,这时也就不用移动位置了
			
			while(left_min < left_max)
			{
				//如果left_min小于left_max,说明现在左边的数据比较大
				//直接把它们接到数组的min之前就行
				k[--right_min] = k[--left_max];	
			}
			while(next>0)
			{
				//把排好序的那部分数组返回该k
				k[--right_min] = temp[--next];		
			}
		}
	}
}

int main(){
	int i,a[10] = {5,2,6,0,3,9,1,7,4,8};
	
	MergeSort(a,10);
	
	printf("排序后的结果是:");
	for(i=0; i<10; i++)
	{
		printf("%d",a[i]);
	}
	
	printf("\n\n");
	
	return 0;
	
}


评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值