算法训练 操作格子

算法训练 操作格子  
时间限制:1.0s   内存限制:256.0MB
       
问题描述

有n个格子,从左到右放成一排,编号为1-n。

共有m次操作,有3种操作类型:

1.修改一个格子的权值,

2.求连续一段格子权值和,

3.求连续一段格子的最大值。

对于每个2、3操作输出你所求出的结果。

输入格式

第一行2个整数n,m。

接下来一行n个整数表示n个格子的初始权值。

接下来m行,每行3个整数p,x,y,p表示操作类型,p=1时表示修改格子x的权值为y,p=2时表示求区间[x,y]内格子权值和,p=3时表示求区间[x,y]内格子最大的权值。

输出格式

有若干行,行数等于p=2或3的操作总数。

每行1个整数,对应了每个p=2或3操作的结果。

样例输入
4 3
1 2 3 4
2 1 3
1 4 3
3 1 4
样例输出
6
3
数据规模与约定

对于20%的数据n <= 100,m <= 200。

对于50%的数据n <= 5000,m <= 5000。

对于100%的数据1 <= n <= 100000,m <= 100000,0 <= 格子权值 <= 10000。


#include<Stdio.h>
#include<stdlib.h>
#define N 100001
typedef struct _Node
{
    int left,right;
    int max;
    int sum;
    struct _Node *pLeft,*pRight;
}Node,*pNode;
int sum = 0;
int max = 0;
int tab[N];
void Init(pNode *root,int left,int right);
void Insert(pNode root,int inx,int n);
void Change(pNode root,int x,int y);
void Max(pNode root,int x,int y);
void Sum(pNode root,int x,int y);
int main()
{
    int n, m;
    int p, x, y;
    int i, j;
    
    scanf("%d %d", &n, &m);
    pNode root;
    Init(&root,1,n);
    
    for(i=1;i<=n;i++)
    {
        scanf("%d", &tab[i]);
        Insert(root,i,tab[i]);
    }
    for(i=0;i<m;i++)
    {
        scanf("%d %d %d", &p, &x, &y);
        switch(p)
        {
            case 1:
                Change(root,x,y);
                break;
            case 2:
                sum = 0;
                Sum(root,x,y);
                printf("%d\n",sum);
                break;
            case 3:
                max = 0;
                Max(root,x,y);
                printf("%d\n",max);
                break;
            default:
                break;
        }
    }
    return 0;
}
void Init(pNode *root,int left,int right)  //初始化线段树 
{
    if(left < right)
    {
        *root  = (pNode)malloc(sizeof(Node));
        pNode p =*root;
        p->left = left;
        p->right = right;
        p->max = p->sum = 0;
        p->pLeft = p->pRight = NULL;
        Init(&(p->pLeft),left,(left+right)/2);
        Init(&(p->pRight),(left+right)/2+1,right);
    }
    else if(left == right)
    {
        *root  = (pNode)malloc(sizeof(Node));
        pNode p =*root;
        p->left = left;
        p->right = right;
        p->max = p->sum = 0;
        p->pLeft = p->pRight = NULL;
    }
}
void Insert(pNode root,int inx,int n) //插入值 
{
    if( root && root->left <= root->right )
    {
        root->sum += n;
        if(root->max < n)
        {
            root->max = n;
        }
        int x = (root->left + root->right)/2;
        if(inx <= x)
        {
            Insert(root->pLeft,inx,n);
        }
        else
        {
            Insert(root->pRight,inx,n);
        }
    }
}
void Change(pNode root,int x,int y)
{
    if( x >= root->left && x <= root->right )
    {
        if(x == root->left && x == root->right)
        {
            root->max = root->sum = y;
            return ;
        }
        else
        {
            int l = (root->left + root->right)/2;
            if(x <= l)
            {
                Change(root->pLeft,x,y);
            }
            else
            {
                Change(root->pRight,x,y);
            }
            root->max = root->pLeft->max > root->pRight->max?root->pLeft->max:root->pRight->max;
            root->sum = root->pLeft->sum + root->pRight->sum;
        }
        
    } 
}
void Sum(pNode root,int x,int y)
{
    if( x==root->left && y==root->right)
    {
        sum += root->sum;
        return ;
    }
    int n = (root->left + root->right)/2;
    if( x>=root->left && y<=n)
    {
        Sum(root->pLeft,x,y);
        return ;
    }
    if( x>=n+1 && y<=root->right)
    {
        Sum(root->pRight,x,y);
        return ;
    }
    Sum(root->pLeft,x,n);
    Sum(root->pRight,n+1,y);
    
}
void Max(pNode root,int x,int y)
{
    if( x==root->left && y==root->right)
    {
        if(root->max >max)
        {
            max = root->max;
        } 
        return ;
    }
    int n = (root->left + root->right)/2;
    if( x>=root->left && y<=n)
    {
        Max(root->pLeft,x,y);
        return ;
    }
    if( x>=n+1 && y<=root->right)
    {
        Max(root->pRight,x,y);
        return ;
    }
    Max(root->pLeft,x,n);
    Max(root->pRight,n+1,y);
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值