位运算_原码反码补码

1、>>  向右位移

2、<<  想左位移

3、>>>算数右移

1、正数的原码、反码补码都是一样的

2、负数的反码=他的原码符号位不变,其他位取反

3、负数的补码=他的反码+1;负数的反码=负数的补码-1;

4、0的反码,补码都是0;

5、java中没有无符号数,换言之,java中的数都是有符号的;

6、在计算机运算的时候,都是以补码的方式来进行运算的,*****

7、当我们看运算结果时,要看他的原码。 *****(!!!)

1、按位与&   :两位全为1,结果为1,否则为0;

2、按位或|     :两位有一个为1,结果就为1.

3、异或 ^      :一个为1,一个为0,结果就为1,否则为0.

4、取反      :就是取反就行,全部取反,反码的时候,符号位是不变的。

import java.util.Scanner;//简单的文本扫描器
public class Change{

	public static void main(String[] args){	
	   
	 		System.out.println(2&3);
	 		// 运算都是按照补码运算的,所以先得到2的补码,因为不管是什么运算都是按照 补码进行运算的。
	 		// 2的默认类型是int,4个字节,1个字节8个bit,它的原码00000000 00000000 00000000 00000010
	 		// 正数三码合一,再算3的原码: 00000000 00000000 00000000 00000011,再做与运算。
	 		// 00000000 00000000 00000000 00000011
	 		// 00000000 00000000 00000000 00000010   运算后
	 		// 00000000 00000000 00000000 00000010   是补码,但是我们最后看的是原码,因为符号位是0,为
	 		// 正数,所以三码合一。因此结果就是2.
	 		
	 		System.out.println(~-2);//结果是1。
	 		/*
	 		-2的原码:10000000 00000000 0000000 00000010
	 		反码:    11111111 11111111 11111111 11111101   //反码的符号位不变,其他位取反
	 		    :                                     +1
	 		 补码     11111111 11111111 11111111 11111110   //求到补码的时候才能进行相应的运算
	 		 取反     00000000 00000000 00000000 00000001  //取反的时候全部取反。

	 		 最后的结果看的是运算后补码的原码,最后的补码是正数,因此我们就可以三码合一。  


	 		 */
	 		System.out.println(~2);//结果是-3。
	 	
	 		/*
	 		2的原码:00000000 00000000 00000000 00000010  正数的三码合一
	 		
	 		2的补码:00000000 00000000 00000000 00000010     补码=反码+1    反码=补码-1
	 		进行运算:
	 		         11111111 11111111 11111111 11111101 这是运算后的补码   
最后的结果要看的是原码:我们先求反码:
            反码:    11111111 11111111 11111111 11111100
            再求原码:(这里对原码再次取反):10000000 00000000 00000000 00000011



	 		 */ 

   	}
}

戒骄戒躁

<think>好的,我现在需要帮助用户理解原码反码补码的计算方法,以及它们在计算机组成原理中的应用。用户已经提供了一些参考资料,我需要整合这些信息,确保回答准确且符合用户的要求。 首先,用户的问题是关于原码反码补码的运算规则,属于计算机基础内容。根据引用[1]和[2],原码是最直观的表示方法,但存在正负零的问题,反码原码的取反,而补码解决了加减运算中的问题。引用[4]提到补码和移码的零表示相同,这可能与问题相关,需要提及。 接下来,我需要按照用户的要求,结构清晰,分步骤解释每个编码的计算方法。例如,原码部分要说明正数和负数的处理,反码则是在原码基础上取反(符号位不变),补码则是反码加1。同时,要强调补码在计算机中的重要性,如统一加减法,消除正负零的问题。 然后,用户希望生成相关问题,我需要根据内容提出相关问题,比如运算示例、补码的优势、移码的作用等。这些问题应该帮助用户进一步巩固知识。 需要注意的是,回答中所有数学表达式要用$...$格式,独立公式用$$...$$,并且正确使用中文。同时,引用标识要自然添加在引用段落末尾,比如引用[^1]、[^2]等。 现在检查是否有遗漏点:是否覆盖了原码反码补码的定义、转换规则、示例以及各自的应用场景?是否需要比较它们的优缺点?用户提供的引用中提到了补码和移码的零处理,这一点很重要,应该包含在补码部分。 最后,确保语言简洁明了,避免专业术语过于复杂,适合不同层次的理解。同时,代码块部分用户没有要求,但示例中的Python代码可能与当前主题无关,所以这里不需要代码示例,但需要数值计算的例子,比如-5的原码反码补码转换过程。 总结回答结构: 1. 原码的定义和计算 2. 反码的定义和计算 3. 补码的定义和计算 4. 三者的对比和应用场景 5. 相关问题生成 现在开始组织内容,确保每个部分都有明确的标题,符合用户的结构要求,并且正确引用参考资料。</think>### 原码反码补码的计算方法及运算规则 #### 1. 原码(Sign-Magnitude) **定义**:原码是数值的二进制直接表示形式,**最高位为符号位**(0表示正数,1表示负数),其余位为数值位。 **规则**: - **正数**:符号位为0,数值部分直接转换为二进制。 例如:$+5$ 的8位原码为 $00000101$。 - **负数**:符号位为1,数值部分转换为二进制。 例如:$-5$ 的8位原码为 $10000101$。 **特点**: - 直观,但存在**正负零问题**($+0$: $00000000$,$-0$: $10000000$)[^4]。 --- #### 2. 反码(Ones' Complement) **定义**:反码是在原码基础上对数值位取反得到(符号位不变)。 **规则**: - **正数**:与原码相同。 例如:$+5$ 的反码为 $00000101$。 - **负数**:符号位保持1,数值位按位取反。 例如:$-5$ 的原码为 $10000101$,反码为 $11111010$。 **特点**: - 解决了部分运算问题,但仍有正负零的问题[^2]。 --- #### 3. 补码(Two's Complement) **定义**:补码反码加1的结果(符号位不变)。 **规则**: - **正数**:与原码相同。 例如:$+5$ 的补码为 $00000101$。 - **负数**:反码加1。 例如:$-5$ 的反码为 $11111010$,补码为 $11111011$。 **特点**: - **统一加减法**:计算机中所有减法可转换为加法运算。 - **消除正负零**:补码中 $+0$ 和 $-0$ 的表示相同(均为 $00000000$)[^1]。 --- #### 4. 对比与应用场景 | 编码类型 | 零的表示 | 运算复杂度 | 应用场景 | |----------|----------|------------|----------------| | 原码 | 两种零 | 高 | 数值显示 | | 反码 | 两种零 | 中 | 历史系统 | | 补码 | 唯一零 | 低 | 现代计算机运算 | --- ### 示例:计算 $-5$ 的原码反码补码 1. **原码**:$10000101$ 2. **反码**:$11111010$(数值位取反) 3. **补码**:$11111011$(反码+1) ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值