卷积神经网络(CNN)与深度卷积神经网络(DCNN)

本文深入探讨了卷积神经网络(CNN)与深度卷积神经网络(DCNN)的区别,通过对比LeNet-5与AlexNet,解析了两者的结构特点与技术革新。同时,提供了基于PyTorch的LeNet-5与AlexNet模型实现代码,有助于理解深度学习中关键网络模型的设计原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作为小白,看到DCNN,一直想知道与CNN的区别,也没找到明确的说法,以下是自己的一点想法,欢迎指正!

 

目录

一、CNN与DCNN

二、基于pytorch的实现

1.LeNet-5

2.AlexNet


一、CNN与DCNN

卷积神经网络,如:LeNet

深度卷积神经网络,如:AlexNet

AlexNet是第一个现代深度卷积网络模型,首次使用了许多现代深度卷积网络的技术方法,比如,采用ReLu作为非线性激活函数,使用Dropout防止过拟合,是用数据增强提高模型准确率,使用GPU进行并行训练等。

AlexNet与LeNet结构类似,但使用了更多的卷积层和更大的参数空间来拟合大规模数据集ImageNet。

卷积神经网络就是含卷积层的网络。AlexNet是浅层神经网络和深度神经网络的分界线。

(选自书《动手学深度学习》、《神经网络与深度学习》)

二、基于pytorch的实现

参考

### 实现深度卷积神经网络 (DCNN) 使用 PyTorch 为了构建并训练一个深度卷积神经网络(DCNN),PyTorch 提供了一系列工具和支持函数来简化这一过程。下面是一个简单的例子,展示了如何定义和初始化一个基本的 DCNN 结构。 #### 定义模型结构 通过继承 `nn.Module` 类创建自定义的神经网络模块: ```python import torch.nn as nn import torch.nn.functional as F class SimpleDCNN(nn.Module): def __init__(self): super(SimpleDCNN, self).__init__() # 卷积层 self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) # 全连接层 self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ``` 此代码片段展示了一个基础版本的 DCNN 架构[^1]。 #### 加载数据集 DataLoader 的应用 利用 PyTorch 中内置的数据加载器 (`DataLoader`) 和 数据集处理库 (`datasets`) 可以方便地获取所需的数据用于训练模型: ```python from torchvision import datasets, transforms from torch.utils.data import DataLoader transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) ``` 这段脚本说明了怎样准备 CIFAR-10 图像分类任务中的训练样本集合,并设置好相应的参数以便于后续迭代访问这些数据[^2]。 #### 训练循环 最后一步就是编写主训练逻辑,在这里会涉及到前向传播、损失计算以及反向传播更新权重等操作: ```python device = 'cuda' if torch.cuda.is_available() else 'cpu' net = SimpleDCNN().to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) for epoch in range(2): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data[0].to(device), data[1].to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print(f'[Epoch {epoch + 1}, Batch {i + 1}] Loss: %.3f' % (running_loss / 2000)) running_loss = 0.0 print('Finished Training') ``` 上述代码实现了完整的训练流程,包括设备选择(CPU/GPU)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值