秋水顽石

所谓的不平凡就是平凡的N次幂!

主成成分分析PCA参考资料

基本概念 PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法。PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。 PCA的工作就是从原始的空间中顺序地找一...

2019-05-11 10:39:47

阅读数 7

评论数 0

Graph Embedding 、Network Embedding和Knowledge Graph Embedding以及Representation 和Embedding之间的区分

注意,在此只是谈一下个人的一点理解,如有不对的地方,欢迎指正,共同探讨! Representation和Embedding 首先,想先说一下representation和embedding之间的区别和联系,仅供参考。这两个词在目前的计算机领域,尤其的是深度学习方面是如火如荼啊,算是热词啊。很多...

2019-03-26 20:37:55

阅读数 35

评论数 0

Knowledge Base、Semantic Web、Semantic Network、Linked Data、Knowledge Graph概念解析

先介绍一下基本的概念 Knowledge Base :通常翻译为“知识库”。知识库是人工智能的经典概念之一。最早是作为专家系统(Expert System)的组成部分,用于知识推理。知识库中的知识有很多种不同的形式,例如本体知识、关联性知识、规则库,案例知识等。相比于知识库的概念,知识图谱更加侧...

2019-03-20 11:41:57

阅读数 106

评论数 0

LDA的研究点

一、来自知乎的回答 参考链接:点击这里 经典的LDA主题模型实现了文本的软聚类的工作,将文档转化为基于主题的数值向量,每个维度上的主题概率取值就是对特定主题的聚类中心的隶属度。由于LDA主题模型提出较早,所以作为基础模型有了很多改进和创新,技术上总结下来有以下几个方面: 短文本的处理和...

2019-03-18 18:02:50

阅读数 18

评论数 0

知识图谱之综述(一目了然)

发现了一张关于知识图谱概括的思维导图,现在共享给大家,看完之后,能够帮助大家对知识知识图谱有了整体的认识。 在此,对上图稍作解析。从图中可以看出,是从知识图谱构建的七个方面(其实,主要是六个方面)展开的思维逻辑,分别是: 技术选型 知识图谱的应用 知识图谱的架构 存储形式 数据来源 自顶向下的...

2019-03-11 11:17:58

阅读数 134

评论数 3

知识图谱(Knowledge Graph)之综述理解

注:该博文是我在看了数篇知识图谱综述以及阅读了相关资料后的一个总结以及自己的相关理解。 知识图谱技术是人工智能技术的重要组成部分,以结构化的方式描述客观世界中的概念、实体及其键的关系。知识图谱提技术提供了一种更好的组织、管理和理解互联网海量信息的能力,将互联网的信息表达成更接近于人类认知...

2019-03-08 09:36:59

阅读数 2163

评论数 0

开始回归

生活 2018年早已经过去了,可是我却一直有点点逃避,不愿意去面对,我想最根本的原因就是,这一年并没有尽自己最大的努力去度过吧,有些许遗憾和虚度吧。   在我刚刚在科研领域找到一点点感觉的时候,宝宝悄然而至,既来之则安之。我本以为,我会继续很努力的去兼顾我的学习和生活,可以随着孕期的增长,我的心思...

2019-02-19 15:10:53

阅读数 17

评论数 0

CSDN最新编辑保存一下

这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数...

2019-02-19 14:48:17

阅读数 31

评论数 0

深度学习之Attention Mechanism

参考文献 1、一文看懂 Attention 机制,你想知道的都在这里了。Enjoy! 这实际上是一篇翻译版的博文,原文在这里.这篇博文实际上只是简单的系统地介绍了attention机制的基本思想,以及它的一些应用。文章并不是特别长,读完之后,可以对attention机制有一个整体的认知。值...

2018-08-03 11:06:18

阅读数 1538

评论数 0

深度学习之训练trick

参考资料 注:因为最近在学习中,这是我在学习过程中阅读过比较好的一些资料,在此作个笔记,若恰能帮助到你们,也是非常欣慰的。 1、Google研究员Ilya Sutskever:成功训练LDNN的13点建议 本文由Ilya Sutskever(Google研究员、深度学习泰斗Geoffrey ...

2018-08-02 16:53:23

阅读数 174

评论数 0

Pytorch之日常整理

1、tensor.view()的作用 torch.Tensor.view会返回具有相同数据但大小不同的新张量。 返回的张量必须有与原张量相同的数据和相同数量的元素,但可以有不同的大小。一个张量必须是连续contiguous()的才能被查看。类似于Numpy的np.reshape()。 2、to...

2018-07-30 10:21:33

阅读数 112

评论数 0

神经网络之Pytorch

参考资料 1、用PyTorch还是TensorFlow?斯坦福大学CS博士生带来全面解答 本篇主要对比了tensorflow和pytorch,对于初学者可以提供一个大体的比较。 2、PyTorch 深度学习: 60分钟快速入门 一个帮助初学者快速入门的教程 3、pytorch中文文档...

2018-07-24 15:45:30

阅读数 139

评论数 0

深度学习之循环神经网络

参考资料 1、Recurrent Neural Networks Tutorial, Part 1 – Introduction to RNNs 大牛写的文章,还是值得一看的,这是关于RNN第一部分的网址,文章里面也给出了其他部分的网址,并且里面也给出一些相应知识点的参考地址,例如SGD等...

2018-07-21 15:47:04

阅读数 69

评论数 0

深度学习之参数初始化

参考资料 以下是关于神经网络参数初始化问题的相关推荐资料 1、为什么神经网络参数不能全部初始化为全0? 原网址为 2、什么时候可以将神经网络的参数初始化为0 3、神经网络weight怎样初始化 4、[神经网络中权重初始化问题] (https://blog.csdn.net/che...

2018-07-17 18:59:11

阅读数 130

评论数 0

深度学习之反向传播

参考资料 1、Implementing a Neural Network from Scratch in Python – An Introduction 这是一篇大神写的文章,利用python实现一个前馈神经网络,可以看一下,动手实现一下有助于理解。 其中代码网址点击这里 2、在1、中有...

2018-07-17 15:28:37

阅读数 148

评论数 0

损失函数

参考资料 1、机器学习中的损失函数

2018-07-17 15:28:09

阅读数 118

评论数 0

深度学习之卷积神经网络

参考资料: 1、padding 2、padding参考 3、tf.nn.conv2d()解释 4、tf.nn.max_pool实现池化操作

2018-07-17 15:10:17

阅读数 83

评论数 0

深度学习之受限玻尔兹曼机(RBM)

参考资料 1、受限玻尔兹曼机学习笔记系列 这篇文章介绍的相对来说比较全面了,推荐阅读。 2、受限玻尔兹曼机基础教程 看完1 后,可以当做一个辅助材料来阅读,不过还是建议仔细阅读比较好,每一次的阅读都会有不同的收获,加油! 3、代码实现...

2018-07-12 15:39:29

阅读数 374

评论数 0

蒙特卡洛法

参考文献1、蒙特卡洛(Monte Carlo)法求定积分2、Monte Carlo Methods in Practice3、A Quick Introduction to Monte Carlo Methods

2018-07-06 19:40:07

阅读数 535

评论数 0

详细解释大数定律+中心极限定理(三)

大数定律 大数定律就以严格的数学形式表现了随机现象的一个性质:平稳结果的稳定性 参考文献 1、漫谈系列——大数定律 改文章直观的解释了弱/强大数定律,以及证明了切比雪夫不等式。...

2018-07-06 17:43:54

阅读数 3037

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭