Python性能分析指南

本文详细介绍了Python性能分析的多种方法,包括使用time命令、time模块、timeit模块、cProfile模块、line_profiler和memory_profiler。通过这些工具,可以定位程序的性能瓶颈,如运行速度和内存使用,从而进行有效的代码优化。cProfile提供函数调用时间,line_profiler进行逐行分析,而memory_profiler则关注内存消耗。
摘要由CSDN通过智能技术生成

总会遇到一个时候你会想提高程序执行效率,想看看哪部分耗时长成为瓶颈,想知道程序运行时内存和 CPU 使用情况。这时候你会需要一些方法对程序进行性能分析和调优。

当我们的确是有需要开始真正优化我们的 Python 程序的时候,我们要做的第一步并不是盲目的去做优化,而是对我们现有的程序进行分析,发现程序的性能瓶颈进而进行针对性的优化。

分析程序的性能可以归结为回答四个基本问题:
- 运行的多快?
- 速度瓶颈在哪里?
- 内存使用率是多少?
- 内存泄露在哪里?

用于分析的程序

程序来自 High Performance Python 的 Julia 集合,对复平面内所有点按公式进行迭代:

f(z)=z2+c f ( z ) = z 2 + c

其中,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值