拉格朗日插值法
拉格朗日插值法
维基百科链接
一个 k 次多项式,可以由 k+1k+1k+1 个 kkk 次多项式相加得到。
拉格朗日插值公式为:
L(x)=∑i=0kyi∏j=0,i≠jkx−xjxi−xjL(x)=\sum_{i=0}^{k}y_i\prod_{j=0,i\neq j}^{k} \frac{x-x_j}{x_i-x_j}L(x)=i=0∑kyij=0,i=j∏kxi−xjx−xj
其中插值基函数 li(x)l_i(x)li(x) 为:
li(x)=∏j=0,i≠jkx−xjx
原创
2020-07-21 15:58:59 ·
2315 阅读 ·
0 评论