目录
5.1 遍历: map、foreach & mapValues
5.5 排序: sorted sortwith & sortby
第九部分 集合
主要内容:
1、Scala中的可变和不可变集合
2、集合的三大类:Seq、Set、Map
3、集合的常用算子
4、Scala与Java之间的集合转换
第1节 可变和不可变集合
根据容器中元素的组织方式和操作方式,可以分为有序和无序、可变和不可变等不同的容器类别;
不可变集合是指集合内的元素一旦初始化完成就不可再进行更改,任何对集合的改变都将生成一个新的集合;
可变集合提供了改变集合内元素的方法;
Scala同时支持可变集合和不可变集合,主要下面两个包:
- scala.collection.mutable:定义了可变集合的特质和具体实现类
- scala.collection.immutable:定义了不可变集合的特质和具体实现类
对于几乎所有的集合类,Scala都同时提供了可变和不可变的版本。
Scala优先采用不可变集合,不可变集合元素不可更改,可以安全的并发访问。
Scala集合有三大类:Seq(序列)、Set(集)、Map(映射);
所有的集合都扩展自Iterable特质。
immutable不可变集合:
mutable可变集合:
小结:
String属于IndexedSeq
Queue队列和Stack堆这两个经典的数据结构属于LinearSeq
Map体系下有一个SortedMap,说明Scala中的Map是可以支持排序的
mutable可变集合中Seq中的Buffer下有ListBuffer,它相当于可变的List列表;
List列表属于Seq中的LinearSeq
第2节 Seq元素序列
Seq代表按照一定顺序排列的元素序列;
该序列是一种特别的可迭代集合,包含可重复的元素;
元素的顺序是确定的,每个元素对应一个索引值;
Seq提供了两个重要的子特质:
- IndexedSeq:提供了快速随机访问元素的功能,它通过索引来查找和定位的
- LinearSeq:提供了访问head、tail的功能,它是线型的,有头部和尾部的概念,通过遍历来查找。
2.1 List
List代表元素顺序固定的不可变的链表,它是Seq的子类,在Scala编程中经常使用。
List是函数式编程语言中典型的数据结构,与数组类似,可索引、存放类型相同的元素。
List一旦被定义,其值就不能改变。
List列表有头部和尾部的概念,可以分别使用head和tail方法来获取:
- head返回的是列表第一个元素的值
- tail返回的是除第一个元素外的其它元素构成的新列表
这体现出列表具有递归的链表结构。
Scala定义了一个空列表对象Nil,定义为List[Nothing]
借助 Nil 可将多个元素用操作符 :: 添加到列表头部,常用来初始化列表;
操作符 ::: 用于拼接两个列表;
package com.ch.part09
object ListDemo {
def main(args: Array[String]): Unit = {
//Nil表示一个空的列表
//::操作符表示向集合中添加元素,它是从右往左进行运算的,所以集合对象一定要放在最右边
val list1 = 1 :: 2 :: 3 :: 4 :: Nil
val list2 = 5 :: 6 :: 7 :: 8 :: Nil
//使用:::操作符拼接集合
val list3=list1:::list2
//返回第一个元素
println(list3.head) // 1
//返回除第一个元系之外的其他元素构成的新列表
println(list3.tail) // List(2, 3, 4, 5, 6, 7, 8)
//返回除最后一个元素之外的其他元素构成的新列表
println(list3.init) // List(1, 2, 3, 4, 5, 6, 7)
//返回最后一个元素
println(list3.last) // List(1, 2, 4, 6, 7, 9)
val list4=List(4,2,6,1,7,9)
println(quickSort(list4))
}
def quickSort(list:List[Int]):List[Int]={
list match {
case Nil=>Nil // 传入为空, 返回空
case head :: tail=> // 否则使用 head 和 tail 获取两部分的集合
//通过partition将tail分为两部分
//小于head的元素放入less列表中,大于head的元素放入greater列表中
val (less,greater) = tail.partition(_<head)
// 从右向左, head 添加进后面的集合中, 再和前面的集合连接到一起
quickSort(less) ::: head :: quickSort(greater)
}
}
}
2.2 Queue
队列Queue是一个先进先出的结构。
队列是一个有序列表,在底层可以用数组或链表来实现。
先进先出的原则,就是先存入的数据,要先取出,后存入的数据后取出。
在Scala中,有可变队列scala.collection.mutable.Queue 和不可变队列scala.collection.immutable.Queue,一般来说,我们使用的是scala.collection.mutable.Queue
package com.ch.part09
import scala.collection.mutable
object QueueDemo {
def main(args: Array[String]): Unit = {
//创建一个可变的队列
val queue1=new mutable.Queue[Int]()
println(queue1) // Queue()
//队列当中添加元素
queue1 +=1
//队列当中添加List列表
queue1 ++=List(2,3,4)
println(queue1) // Queue(1, 2, 3, 4)
//按照进入队列的顺序,删除队列当中的元素
//返回队列中的第一个元素,并从队列中删除这个元素
val dequeue=queue1.dequeue()
println(dequeue) // 1
println(queue1) // Queue(2, 3, 4)
//再向队列中添加元素
queue1.enqueue(5,6,7)
println(queue1) // Queue(2, 3, 4, 5, 6, 7)
//获取第一个、最后一个元素
println(queue1.head) // 2
println(queue1.last) // 7
}
}
第3节 Set
Set(集合)是没有重复元素的对象集合,Set中的元素是唯一的;
Set分为可变的和不可变的集合;
默认情况下,使用的是不可变集合(引用 scala.collection.immutable.Set);
使用可变集合,需要引用 scala.collection.mutable.Set 包;
package com.ch.part09
object SetDemo {
def main(args: Array[String]): Unit = {
//创建一个Set集合
val set = Set(1, 2, 3, 4, 5, 6)
set.drop(1)
println(set) //Set(5, 1, 6, 2, 3, 4)
//创建一个可变的Set
import scala.collection.mutable.Set
val mutableSet = Set(3, 4, 5)
//对可变的Set进行增加元素、删除元素的操作
mutableSet.add(7)
println(mutableSet) // Set(5, 3, 7, 4)
mutableSet.remove(7)
println(mutableSet) // Set(5, 3, 4)
//通过使用 += -= 进行增加、删除元素的操作
mutableSet += 8
mutableSet -= 3
println(mutableSet) // Set(5, 4, 8)
//对Set集合进行交集的操作(& intersect)
println(Set(1, 2, 3) & Set(2, 3, 4)) // Set(2, 3)
println(Set(1, 2, 3).intersect(Set(2, 3, 4))) // Set(2, 3)
//对Set集合进行并集的操作(++ | union)
println(Set(1,2,3) ++ Set(2,3,4)) // Set(1, 2, 3, 4)
println(Set(1,2,3) | Set(2,3,4)) // Set(1, 2, 3, 4)
println(Set(1,2,3).union(Set(2,3,4))) // Set(1, 2, 3, 4)
//对Set集合进行差集的操作(-- &~ diff)
println(Set(1,2,3) -- Set(2,3,4)) // Set(1)
println(Set(1,2,3) &~ Set(2,3,4)) // Set(1)
println(Set(1,2,3).diff(Set(2,3,4)) ) // Set(1)
}
}
第4节 Map
Map(映射)是一系列键值对的容器;Scala 提供了可变的和不可变的两种版本的Map,分别定义在包 scala.collection.mutable 和 scala.collection.immutable 里;
默认情况下,Scala中使用不可变的 Map;
如果要使用可变Map,必须导入scala.collection.mutable.Map;
在Map中,键的值是唯一的,可以根据键来对值进行快速的检索。
package com.ch.part09
import scala.collection.mutable
object MapDemo {
def main(args: Array[String]): Unit = {
//使用两种方式定义Map
val map1 = Map("a" -> 1, "b" -> 2)
val map2 = Map(("a", 1), ("b", 2))
map1.keys.foreach(println(_)) // a b
map1.values.foreach(println(_)) // 1 2
//如果访问不存在的Key值时,会抛出异常
// println(map1("c"))
//也可以使用get方法,来获取与Key值相对应的Value值。
//get方法会返回一个Option对象,要么要是Some(有值),要么是None(无值)
val num: Option[Int] = map1.get("c")
num match {
case None => println("None") // None
case Some(x) => println(x) //
}
//获取Key值所对应的Value值,如果键Key不存在,那么就返回指定的默认值
val num2: Int = map1.getOrElse("d", 0)
println(num2) // 0
//创建一个可变的Map
val map3 = scala.collection.mutable.Map("a" -> 1, "b" -> 2)
println(map3) // Map(b -> 2, a -> 1)
map3("a") = 10
println(map3) // Map(b -> 2, a -> 10)
//增加一个元素
map3("c") = 3
println(map3) // Map(b -> 2, a -> 10, c -> 3)
//通过+=添加元素,-=删除元素
map3 += ("d" -> 4, "f" -> 5)
println(map3) // Map(b -> 2, d -> 4, a -> 10, c -> 3, f -> 5)
map3 -= "d"
println(map3) // Map(b -> 2, a -> 10, c -> 3, f -> 5)
//将Key与Value的值互换
val kv: mutable.Map[Int, String] = for ((k, v) <- map3) yield (v, k)
println(kv) // Map(2 -> b, 5 -> f, 10 -> a, 3 -> c)
//推荐使用下面的方式将Key与value的值互换
map3.map(x=>(x._2,x._1)).foreach(println(_)) // (2,b) (5,f) (10,a) (3,c)
//通过拉链操作创建Map
val a=Array(1,2,3)
val b=Array("a","b","c")
val c: Array[(Int, String)] = a.zip(b)
val d: Map[Int, String] = a.zip(b).toMap
println(d) // Map(1 -> a, 2 -> b, 3 -> c)
}
}
第5节 集合常用算子
5.1 遍历: map、foreach & mapValues
集合对象都有 foreach、map 算子。
两个算子的共同点在于:都是用于遍历集合对象,并对每一项执行指定的方法;
两个算子的差异点在于:
foreach无返回值(准确说返回void),用于遍历集合
map返回集合对象,用于将一个集合转换成另一个集合
// 使用 foreach 打印集合元素
val numlist = (1 to 10).toList
numlist.foreach(elem=>print(elem+" "))
numlist.foreach(print _)
numlist.foreach(print)
// 使用 map 对集合进行转换
numlist.map(_ > 2) // res6: List[Boolean] = List(false, false, true, true, true, true, true, true, true, true)
numlist.map(_ * 2) // res7: List[Int] = List(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)
操作 Map集合时,mapValues用于遍历value,是map操作的一种简化形式;
// Range(20, 0, -2)用给定的步长值设定一个范围,从开始到结束(不包含)。
//Map(20 -> 0,18 -> 1,16 -> 2,14 -> 3,12 -> 4,10 -> 5,8 -> 6,6 -> 7,4 -> 8,2 ->9)
val map = Range(20, 0, -2).zipWithIndex.toMap
// 将map集合中的value值+100
map.map(elem => (elem._1, elem._2 + 100))
map.map{case (k,v) => (k, v+100)}
// mapValues的表达最简洁
map.mapValues(_+100)
5.2 展开: flatten & flatMap
flatten的作用是把嵌套的结构展开,把结果放到一个集合中;
在 flatMap 中传入一个函数,该函数对每个输入都返回一个集合(而不是一个元素),最后把生成的多个集合“拍扁”成为一个集合;
scala> val lst1 = List(List(1,2), List(3,4))
lst1: List[List[Int]] = List(List(1, 2), List(3, 4))
scala> lst1.flatten
res5: List[Int] = List(1, 2, 3, 4)
// flatten 把一个字符串的集合展开为一个字符集合,因为字符串本身就是字符的集合
scala> val lst4 = List("Java", "hadoop")
lst4: List[String] = List(Java, hadoop)
scala> lst4.flatten
res8: List[Char] = List(J, a, v, a, h, a, d, o, o, p)
// flatten 有效的处理 Some 和 None 组成的集合。它可以展开Some元素形成一个新的集合,同时去掉 None元素
scala> val x = Array(Some(1), None, Some(3), None)
x: Array[Option[Int]] = Array(Some(1), None, Some(3), None)
// 方法很多,flatten最简单
scala> x.flatten
res9: Array[Int] = Array(1, 3)
scala> x.collect{case Some(i) => i}
res10: Array[Int] = Array(1, 3)
scala> x.filter(!_.isEmpty).map(_.get)
res11: Array[Int] = Array(1, 3)
// 下面两条语句等价
val lst = List(List(1,2,5,6),List(3,4))
// 将 lst 中每个元素乘2,最后作为一个集合返回
// 此时 flatMap = flatten + map
//List(1,2,5,6,3,4)
lst.flatten.map(_*2)
lst.flatMap((x: List[Int]) => x.map(_*2))
lst.flatMap(_.map(_*2))
// 将字符串数组按空格切分,转换为单词数组
val lines = Array("Apache Spark has an advanced DAG execution engine",
"Spark offers over 80 high-level operators")
// 下面两条语句效果等价
//map算子产生的结果:Array(Array(Apache, Spark, has, an, advanced, DAG, execution, engine), Array(Spark, offers, over, 80, high-level, operators))
// flatten算子产生的结果:Array(Apache, Spark, has, an, advanced, DAG, execution, engine, Spark, offers, over, 80, high-level, operators)
lines.map(_.split(" ")).flatten
// 此时 flatMap = map + flatten
lines.flatMap(_.split(" "))
备注:flatMap = flatten + map 或 flatMap = map + flatten
5.3 偏函数并行计算: collect
collect通过执行一个并行计算(偏函数),得到一个新的数组对象
package com.ch.part09
/**
* @author CH
*/
object CollectDemo {
//通过下面的偏函数,把chars数组的小写a转换为大写的A
val fun: PartialFunction[Char, Char] = {
case 'a' => 'A'
case x => x
}
def main(args: Array[String]): Unit = {
val chars = Array('a', 'b', 'c')
val newchars = chars.collect(fun)
println("newchars:" + newchars.mkString(",")) // newchars:A,b,c
}
}
5.4 归约: reduce
reduce可以对集合当中的元素进行归约操作;
还有 reduceLeft 和 reduceRight ,reduceLeft 从左向右归约,reduceRight 从右向左归约;
val lst1 = (1 to 10).toList
lst1.reduce(_+_)
// 为什么这里能出现两个占位符?
lst1.reduce(_+_)
// 我们说过一个占位符代表一个参数,那么两个占位符就代表两个参数。根据这个思路改写等价的语句
// x类似于buffer,缓存每次操作的数据;y每次操作传递新的集合元素
lst1.reduce((x, y) => x + y)
// 利用reduce操作,查找 lst1 中的最大值
lst1.reduce((x,y) => if (x>y) x else y)
// reduceLeft、reduceRight
lst1.reduceLeft((x,y) => if (x>y) x else y)
lst1.reduceRight((x,y) => if (x>y) x else y)
5.5 排序: sorted sortwith & sortby
Scala中对于集合的排序有三种方法:sorted、sortBy、sortWith
package com.ch.part09
/**
* @author CH
*/
object SortDemo {
def main(args: Array[String]): Unit = {
val list = List(1, 9, 3, 8, 5, 6)
//sorted方法对一个集合进行自然排序
//sorted源码:def sorted[B >: A](implicit ord: Ordering[B]): Repr
//源码中有两点值得注意的地方:
// 1.sorted方法中有个隐式参数ord: Ordering。
// 2.sorted方法真正排序的逻辑是调用的java.util.Arrays.sort
val numSort: List[Int] = list.sorted
println(numSort)
//sortBy源码:def sortBy[B](f: A => B)(implicit ord: Ordering[B]): Repr = sorted(ord on f)
//sortBy最后调用的sorted方法
println(list.sortBy(x => x).reverse)
//sortWith源码:def sortWith(lt: (A, A) => Boolean): Repr = sorted(Ordering fromLessThan lt)
print(list.sortWith(_ > _))
}
}
第6节 与Java集合的转换
使用 scala.collection.JavaConverters 与Java集合交互。它有一系列的隐式转换,添加了asJava和asScala的转换方法。
import scala.collection.JavaConverters._
val list: Java.util.List[Int] = List(1,2,3,4).asJava
val buffer: scala.collection.mutable.Buffer[Int] = list.asScala
第十部分 隐式机制
主要内容:
1、隐式转换
2、隐式转换函数
3、隐式参数和隐式值
第1节 隐式转换
隐式转换和隐式参数是Scala中两个非常强大的功能,利用隐式转换和隐式参数,可以提供类库,对类库的使用者隐匿掉具体的细节。
Scala会根据隐式转换函数的签名,在程序中使用到隐式转换函数接收的参数类型定义的对象时,会自动将其传入隐式转换函数,转换为另外一种类型的对象并返回,这就是“隐式转换”。
- 首先得有一个隐式转换函数
- 使用到隐式转换函数接收的参数类型定义的对象
- Scala自动传入隐式转换函数,并完成对象的类型转换
隐式转换需要使用implicit关键字。
使用Scala的隐式转换有一定的限制:
- implicit关键字只能用来修饰方法、变量、参数
- 隐式转换的函数只在当前范围内才有效。如果隐式转换不在当前范围内定义,那么必须通过import语句将其导入
Spark源码中有大量的隐式转换和隐式参数,因此必须掌握隐式机制。
第2节 隐式转换函数
Scala的隐式转换最核心的就是定义隐式转换函数,即implicit conversion function。
定义的隐式转换函数,只要在编写的程序内引入,就会被Scala自动使用。
隐式转换函数由Scala自动调用,通常建议将隐式转换函数的名称命名为“one2one”的形式。
示例1:下面代码中定义了一个隐式函数
class Num {}
class RichNum(num: Num) {
def rich(): Unit = {
println("Hello Implicit!")
}
}
object ImplicitDemo {
// 定义一个名称为num2RichNum的隐式函数
implicit def num2RichNum(num: Num): RichNum = {
new RichNum(num)
}
def main(args: Array[String]): Unit = {
val num = new Num
// num对象并没有rich方法,编译器会查找当前范围内是否有可转换的函数
// 如果没有则编译失败,如果有则会调用。
num.rich()
}
}
示例2:导入隐式函数
package test.implicitdemo
object Int2String {
implicit def int2String(num: Int):String = num.toString
}
下面代码中调用了String类型的length方法,Int类型本身没有length方法,但是在可用范围内定义了可以把Int转换为String的隐式函数int2String,因此函数编译通过并运行出正确的结果。
此示例中隐式函数的定义必须定义在使用之前,否则编译报错。
import test.implicitdemo.Int2String._
object ImplicitTest {
def main(args: Array[String]): Unit = {
println(20.length)
}
}
通过import test.implicitdemo.Int2String._,将Int2StringTest内部的成员导入到相应的作用域内,否则无法调用隐式函数。
要实现隐式转换,只要在程序可见的范围内定义隐式转换函数即可,Scala会自动使用隐式转换函数。
隐式转换函数与普通函数的语法区别就是,要以implicit开头,而且最好要定义函数返回类型。
隐式转换案例:特殊售票窗口(只接受特殊人群买票,比如学生、老人等),其他人不能在特殊售票窗口买票。
package com.ch.part10
class SpecialPerson(var name: String)
class Older(var name: String)
class Student(var name: String)
class Worker(var name: String)
object ImplicitDemoTwo {
// 调用这个方法时, 会判断传入的参数, 调用隐式转换函数
def buySpecialTickWindow(person: SpecialPerson): Unit = {
if (person != null) {
println(person.name + "购买了一张特殊票!")
} else {
println("你不是特殊人群,不能在此购票!")
}
}
//定义一个隐式转换函数
implicit def any2SpecialPerson(any: Any): SpecialPerson = {
any match {
case any: Older => new SpecialPerson(any.asInstanceOf[Older].name)
case any: Student => new SpecialPerson(any.asInstanceOf[Student].name)
case _ => null
}
}
def main(args: Array[String]): Unit = {
val stu = new Student("jacky")
val older = new Older("old man")
val worker = new Worker("lisi")
buySpecialTickWindow(stu) // jacky购买了一张特殊票!
buySpecialTickWindow(older) // old man购买了一张特殊票!
buySpecialTickWindow(worker) // 你不是特殊人群,不能在此购票!
}
}
第3节 隐式参数和隐式值
在函数定义的时候,支持在最后一组参数中使用 implicit ,表明这是一组隐式参数。在调用该函数的时候,可以不用传递隐式参数,而编译器会自动寻找一个 implicit 标记过的合适的值作为参数。
Scala编译器会在两个范围内查找:
- 当前作用域内可见的val或var定义隐式变量
- 隐式参数类型的伴生对象内隐式值
package com.ch.part10
object DoublyDemo {
def print(num:Double)(implicit fmt:String): Unit ={
println(fmt format(num))
}
def main(args: Array[String]): Unit = {
print(3.245)("%.1f") // 3.2
//定义一个隐式变量
implicit val printFmt="%.3f"
print(3.24) // 3.240
}
}
第十一部分 扩展部分
主要内容:
1、类型参数
泛型类、泛型函数、协变和逆变
2、Akka
第1节 类型参数
Scala的类型参数与Java的泛型是一样的,可以在集合、类、函数中定义类型参数,从而保证程序更好的健壮性。
1.1 泛型类
泛型类,顾名思义,其实就是在类的声明中定义一些泛型类型,然后在类内部的字段或者方法,就可以使用这些泛型类型。
使用泛型类,通常是需要对类中的某些成员,比如某些字段和方法中的参数或变量进行统一的类型限制,这样可以保证程序更好的健壮性和稳定性。
如果不使用泛型进行统一的类型限制,那么在后期程序运行过程中难免会出现问题,比如传入了不希望的类型导致程序出问题。
在使用泛型类的时候,比如创建泛型类的对象,只需将类型参数替换为实际的类型即可。
Scala自动推断泛型类型特性:直接给使用泛型类型的字段赋值时,Scala会自动进行类型推断。
泛型类的定义如下:
package com.ch.part11
//定义一个泛型类
class Stack[T1, T2, T3](name: T1) {
var age: T2 = _
var address: T3 = _
def getInfo: Unit = {
println(s"$name,$age,$address")
}
}
使用上述的泛型类,只需要使用具体的类型代替类型参数即可。
object GenericityDemo {
def main(args: Array[String]): Unit = {
//创建泛型类的对象, 下面的"lisi" 由scala自动推断类型
val stack=new Stack[String,Int,String]("lisi")
stack.age=20
stack.address="北京"
stack.getInfo
}
}
1.2 泛型函数
泛型函数,与泛型类类似,可以给某个函数在声明时指定泛型类型,然后在函数体内,多个变量或者返回值之间,就可以使用泛型类型进行声明,从而对某个特殊的变量,或者多个变量,进行强制性的类型限制。
与泛型类一样,你可以通过给使用了泛型类型的变量传递值来让Scala自动推断泛型的实际类型,也可以在调用函数时,手动指定泛型类型。
案例:卡片售卖机,可以指定卡片的内容,内容可以是String类型或Int类型
object GenericityFunction {
def getCard[T](content: T) = {
content match {
case content: Int => s"card:$content is Int "
case content: String => s"card:$content is String"
case _ => s"card:$content"
}
}
def main(args: Array[String]): Unit = {
println(getCard[String]("hello"))
println(getCard(1001))
}
}
1.3 协变和逆变
Scala的协变和逆变是非常有特色的,完全解决了Java中的泛型的一大缺憾!
举例来说,Java中,如果有Professional是Master的子类,那么Card[Professionnal]是不是Card[Master]的子类?
答案:不是。因此对于开发程序造成了很多的麻烦。
而Scala中,只要灵活使用协变和逆变,就可以解决Java泛型的问题。
协变定义形式如:trait List[+T] {}
当类型S是类型A的子类型时,则List[S]也可以认为是List[A}的子类型,即List[S]可以泛化为List[A],也就是被参数化,类型的泛化方向与参数类型的方向是一致的,所以称为协变(covariance)。
逆变定义形式如:trait List[-T] {}
当类型S是类型A的子类型,则Queue[A]反过来可以认为是Queue[S}的子类型,也就是被参数化类型的泛化方向与参数类型的方向是相反的,所以称为逆变(contravariance)。
小结:
如果A是B的子类,那么在协变中,List[A]就是List[B]的子类; 在逆变中,List[A]就是List[B]的父类
协变案例:只有大师以及大师级别以下的名片都可以进入会场
package com.ch.part11
//大师
class Master
//专家
class Professor extends Master
//讲师
class Teacher
//定义协变,
//class Card[+T]
//定义逆变
class Card[-T]
object ConvarianceDemo {
//def enterMeet(card: Card[Master]): Unit = { // 协变
def enterMeet(card: Card[Professor]): Unit = { //逆变
//只有Card[Master]和它的子类才能进入会场
println("欢迎进入会场!")
}
def main(args: Array[String]): Unit = {
val masterCard = new Card[Master]
val professorCard = new Card[Professor]
val teacherCard = new Card[Teacher]
enterMeet(masterCard)
enterMeet(professorCard)
// enterMeet(teacherCard) // 协变报错, 因为 Teacher 不是Master的子类
} // 逆变报错, 因为 Teacher 不是 Professor 的父类
}
第2节 Akka 高并发、分布式和容错应用
Akka是Java虚拟机平台上构建高并发、分布式和容错应用的工具包和运行时。
Akka用Scala语言编写,同时提供了Scala和Java的开发接口。
Akka处理并发的方法基于Actor模型,Actor之间通信的唯一机制就是消息传递。
2.1 Actor
Scala的Actor类似于Java中的多线程编程。
但是不同的是,Scala的Actor提供的模型与多线程有所不同。Scala的Actor尽可能地避免锁和共享状态,从而避免多线程并发时出现资源争用的情况,进而提升多线程编程的性能。
Actor可以看作是一个个独立的实体,Actor之间可以通过交换消息的方式进行通信,每个Actor都有自己的收件箱(Mailbox)。
一个Actor收到其他Actor的信息后,根据需要作出各种相应。消息的类型可以是任意的,消息的内容也可以是任意的。
ActorSystem
在Akka中,ActorSystem是一个重量级的结构。
它需要分配多个线程,所以在实际应用中,ActorSystem通常是一个单例对象,我们可以使用这个ActorSystem创建很多Actor。
Akka案例:
创建一个maven项目,在项目的pom文件中增加如下依赖:
(注意!! scala 的 sdk版本, 和 sccala.compat的版本要小版本一致!!)
<!-- 定义一下常量-->
<properties>
<encoding>UTF-8</encoding>
<scala.version>2.12.3</scala.version>
<scala.compat.version>2.12</scala.compat.version>
<akka.version>2.4.17</akka.version>
</properties>
<dependencies>
<!-- 添加scala的依赖-->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<!-- 添加akka的actor依赖-->
<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-actor_${scala.compat.version}</artifactId>
<version>${akka.version}</version>
</dependency>
<!-- 多进程之间的Actor通信-->
<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-remote_${scala.compat.version}</artifactId>
<version>${akka.version}</version>
</dependency>
</dependencies>
<!-- 指定插件-->
<build>
<!-- 指定源码包和测试包的位置-->
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<!-- 指定编译scala的插件-->
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
<configuration>
<args>
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala_dependencies</arg>
</args>
</configuration>
</execution>
</executions>
</plugin>
<!-- maven打包的插件-->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.4.3</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>reference.conf</resource>
</transformer>
<!-- 指定main方法-->
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransfor mer">
<mainClass></mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
import akka.actor.{Actor, ActorRef, ActorSystem, Props}
import scala.io.StdIn
class HelloActor extends Actor {
// 重写
//接收消息并进行处理
override def receive: Receive = {
case "吃了吗" => println("吃过了")
case "吃的啥" => println("北京烤鸭")
case "拜拜" => {
//关闭自己
context.stop(self)
//关闭ActorSystem
context.system.terminate()
}
}
}
object HelloActor {
//通过ActorSystem创建线程池对象myFactory
private val myFactory = ActorSystem("myFactory")
//通过myFactory.actorOf来创建一个Actor
private val helloActorRef: ActorRef = myFactory.actorOf(Props[HelloActor], "helloActor")
def main(args: Array[String]): Unit = {
var flag = true
while (flag) {
print("请输入发送的消息:")
val consoleLine: String = StdIn.readLine()
// ! 的作用: 发送消息
helloActorRef ! consoleLine
if (consoleLine.equals("拜拜")) {
flag = false
println("程序即将结束!")
}
//让程序休眠100毫秒
Thread.sleep(100)
}
}
}
课程总结
- 《Scala编程》课程共十一部分
课程目的:使用Scala进行Spark开发、阅读Spark源码
第一部分 Scala基础
第二部分 控制结构和函数
第三部分 数组和元组
第四部分 类与对象
第五部分 继承
第六部分 特质
第七部分 模式匹配和样例类
第八部分 函数及抽象化
第九部分 集合
第十部分 隐式机制
第十一部分 扩展部分
- Scala功能强大,内容很多,还有一些内容课程中没有涉及
- 这门课程作为学习Scala的起点,而非终点