Leet Code 72 Edit Distance - 编辑距离 - Java

问题原始链接 https://leetcode.com/problems/edit-distance

给定两个单词 word1 和 word2,找到把 word1 转变成 word2 的最小步数。(每次操作记为一步)

允许对一个单词进行以下三种操作:

  1. 插入一个字符
  2. 删除一个字符
  3. 替换一个字符

思路:使用动态规划法。申请一个整型数组 dp[word1.length+1][word2.length+1]。

dp[i+1][j+1] 表示把 word1[0..i] 变成 word2[0..j] 需要的最小步数。

dp[0][j+1] 表示把空串变成 word2[0..j]需要的最小步数,很明显需要插入 j+1 个字符,所以 dp[0][j+1]=j+1。

dp[i+1][0] 表示把 word1[0..i] 变成空串需要的最小步数,很明显需要删除 i+1 个字符,所以 dp[i+1][0]=i+1。

如果 word1[i] == word2[j],只需要把 word1[0..i-1] 变成 word2[0..j-1],所以 dp[i+1][j+1]=dp[i][j]。

如果 word1[i] != word2[j],把 word1[0..i] 变成 word2[0..j] 有三种方式:

  • 先把 word1[0..i-1] 变成 word2[0..j],然后删除 word1[i]
  • 先把 word1[0..i] 变成 word2[0..j-1],然后插入 word2[j]
  • 先把 word1[0..i-1] 变成 word2[0..j-1],然后把 word1[i] 替换成 word2[j]

取这三种方式中的最小值,dp[i+1][j+1]=min(dp[i][j+1],dp[i+1][j],dp[i][j])+1。

最后 dp[word1.length][word2.length] 即为最终结果。

public class Solution {
  public static int minDistance(String word1, String word2) {
    int[][] dp = new int[word1.length() + 1][word2.length() + 1];
    for (int j = 1; j <= word2.length(); j++) {
      dp[0][j] = j;
    }
    for (int i = 1; i <= word1.length(); i++) {
      dp[i][0] = i;
    }

    for (int i = 0; i < word1.length(); i++) {
      for (int j = 0; j < word2.length(); j++) {
        if (word1.charAt(i) == word2.charAt(j)) {
          dp[i + 1][j + 1] = dp[i][j];
        } else {
          dp[i + 1][j + 1] = Math.min(Math.min(dp[i + 1][j], dp[i][j + 1]),
              dp[i][j]) + 1;
        }
      }
    }
    return dp[word1.length()][word2.length()];
  }
}

 

转载于:https://my.oschina.net/mistymarch/blog/700839

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值