大数据:聚类

本文详细介绍了大数据聚类的概念,包括层次聚类、K-均值算法及其优化方法如BFR、CURE和GRGPF算法。还讨论了流聚类和基于Map-Reduce的聚类策略,揭示了处理高维空间和大规模数据的挑战及解决方案。
摘要由CSDN通过智能技术生成
大数据:聚类

下面是我看《大数据—互联网大规模数据挖掘与分布式处理》一书第七章的总结。

1 聚类:促某空间下点形式的有用的概要表示。为了对点进行聚类,需要在该空间下定义一个距离测度。

2 聚类算法:层次聚类算法 将每个点自己都看成一个簇,然后相近的簇进行合并。点分配聚类算法依次考虑每个点并将他们分配到最符合的簇。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值