自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 开放集域适应文献阅读五

开放集域适应。

2022-11-22 21:40:43 488

原创 开放集域适应文献阅读四

开放集域适应。

2022-11-18 15:36:19 586

原创 开放集域适应文献阅读三

开集域适应。

2022-11-17 19:19:54 815

原创 开放集域适应文献阅读二

开放集域适应。

2022-11-17 11:10:01 726

原创 开放集域适应文献阅读一

开集域适应。

2022-11-16 20:15:39 812

原创 大规模数据的聚类算法研究01

大规模数据聚类抽样方法。

2022-11-14 23:46:46 986

原创 有亿点点烧脑的粗糙集属性约简----4 模糊自信息测度及其特征选择应用

自信息可以表示信号的不确定性。将自信息的概念引出到模糊粗糙集模型中可以用来度量模糊决策的不确定性。

2021-09-23 14:57:18 585 1

原创 有亿点点烧脑的粗糙集属性约简----3 邻域自信息测度及其特征选择应用

邻域粗糙集是处理数据挖掘不确定性的有效方法之一。 在邻域粗集中,正域通常被用来反映特征子集的分类能力。然而,正域并不是分类精度的一个有效估计,因为它只考虑了包含一致性的决策邻域下近似信息而忽略了决策的边界邻域上近似信息。针对目前邻域粗糙集模型中特征评估函数仅依据正域样本构造的缺点,通过引入决策自信息测度的概念,利用邻域粗糙集理论中的上下近似概念构造了决策变量的四种自信息不确定性测度,并详细讨论了其相关性质。基于第四种邻域自信息测度模型,构造特征评价函数——依赖度函数,并设计特征选择算法。

2021-09-15 22:06:39 878 1

原创 有亿点点烧脑的粗糙集属性约简----2 基础知识

邻域粗糙集和模糊粗糙集作为处理数据不确定的有效工具,被广泛用于数据挖掘、模式识别、人工智能等众多领域。下面回顾相关基础知识。

2021-09-14 20:56:57 738 2

原创 有亿点点烧脑的粗糙集属性约简----1 绪论

大数据(Big data)时代,越来越多的属性被获取存储,其中存在一些属性对于分类任务是不相关或冗余的。这些冗余的特征会使机器学习任务更加复杂,甚至降低学习性能。因此有效地处理冗余数据迫在眉睫,成为目前分类学习算法的一大挑战。

2021-09-10 16:17:00 1150

原创 遗传算法优化神经网络----1

遗传神经网络算法和神经网络算法最本质的区别可以说是学习方法不同,或者说模型的优化方法不同。前者应该是基于遗传算法进行网络参数的学习,而后者大都是采用反向传播(BP)算法进行网络参数的学习。遗传算法优化 BP 神经网络分为BP神经网络结构确定、遗传算法优化和 BP 神经网络预测3个部分。

2021-05-07 10:15:14 6165 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除