一、引言
当下做为一名产品经理,对AI相关知识的了解以及深入的学习,是必不可少的。在这里将个人的学习过程进行记录,并将各知识点做为记录。
二、AI的定义和问题
人工智能(Artificial Intelligence),英文缩写为AI。是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
从定义上看,人工智能应该是一个让机器学着像人一样进行“思考”和“做事”。
现阶段我们常能用到的人工智能,更像一个问答机,你来提出问题,它给你一个答案,这个过程可以很简单,如1+1=?这种,也可以很复杂,如提供一下黑龙江省齐齐哈尔市种植玉米的方案。它更像是一个智能版的搜索引擎。在一定程度上解决了我们很多的麻烦,方便了我们的工作和生活,可是它在工作中的应用,还是会有很多问题。
问题
当我列出一个产品方案的大纲让它帮忙来编写一个方案的时候,你会发现这个方案质量有点差,虽然文字很通畅,但是内容相对空洞,可行性不太高。
当我列出一个大纲让它帮我做一个PPT时,说实话,总结和配图也不是很好。
三、AI的发展史
1、规则模型
这可能是最早的AI模型,有人还把它叫做传统专家模型,它更像是一个字典,里面存放了很多的知识点,你用的时候,根据需要去查询和匹配。
对于一些规则类的问题,它能够很好的解决,比如数学公式、棋类游戏、药物配方等。它的匹配可以说是相对精准匹配,你前期给过它什么,它就会给你匹配出什么。最大的问题就是它不会主动学习。
2、机器学习
机器学习就象你在教一个小孩子识别猫和狗,你给他看很多猫狗的照片,告诉他哪些是猫,哪些是狗,小朋友看得多了,慢慢就会识别了,这就是机器学习的基本原理:让计算机从数据中自己学习规律。
机器学习(Machine Learning)就是通过算法让计算机从历史数据中发现规律(称为"模型"),并用这些规律预测新数据的技术。它依赖大量数据进行训练,它学习的是一般规律而非记忆特定样本。
3、神经网络
神经网络是受人脑神经元结构启发的计算模型,由大量相互连接的节点(神经元)组成,能够学习输入和输出之间的复杂关系。通常情况下人工神经网络能基于外界信息改变内部结构,是一种具备学习功能的自适应系统。
神经网络更像人类的大脑对一件事物的分析,比如一盆红烧肉放在面前,你会用眼睛来看它的样子,用鼻子来闻它的气味,用嘴来品尝它的味道一样,是由多个相关的神经元来完成对一件事物的分析。
神经网络结构
- 卷积神经网络(CNN)
卷积神经网络(CNN)是一种用于处理图像、视频等数据的神经网络架构。它的核心思想是从图像中提取有用的特征,然后用这些特征来完成任务,比如识别图像中的物体、人脸等。
卷积操作是CNN的核心,它就像一个“过滤器”,用来从图像中提取特征。
- 循环神经网络(RNN)
循环神经网络是一种专门用于处理序列数据(如文本、语音、时间序列)的深度学习模型。其核心思想是通过循环连接和状态记忆机制,实现对序列数据的时序建模和上下文相关特征提取。
循环神经网络具有记忆性。
RNN 被广泛应用于自然语言处理(Natural Language Processing,NLP)和各类时间序列预测任务。
- Transformer网络
Transformer其核心创新是通过并行化序列处理和自注意力机制替代传统循环神经网络,解决了传统RNN在长序列训练中的效率瓶颈。
虽然transformer原本是聚焦在自然语言处理领域,但由于其出色的解释性和计算性能开始广泛地使用在AI各个领域,成为最近几年最流行的AI算法模型。
最让人熟悉的就是现在各个大模型应用中的流畅对话。

被折叠的 条评论
为什么被折叠?



