python自动化测试之异常及日志操作实例分析

本文深入探讨Python自动化测试中异常的捕获与处理,以及日志记录的重要性。介绍了logging模块的使用,包括模块级别函数记录日志、日志系统的组件、日志回滚和多模块共享。同时,讲解了Python内置和自定义异常类型,以及异常捕获的try...except结构。最后推荐了一个程序员学习资源。
摘要由CSDN通过智能技术生成

本文实例讲述了python自动化测试之异常及日志操作。分享给大家供大家参考,具体如下:

为了保持自动化测试用例的健壮性,异常的捕获及处理,日志的记录对掌握自动化测试执行情况尤为重要,这里便详细的介绍下在自动化测试中使用到的异常及日志,并介绍其详细的用法。

一、日志

打印日志是很多程序的重要需求,良好的日志输出可以帮我们更方便的检测程序运行状态。Python标准库提供了logging模块,切记Logger从来不直接实例化,其好处不言而喻,接下来慢慢讲解Logging模块提供了两种记录日志的方式。

logging之模块级别的函数方式记录日志

import logging
#设置日志,包括filename、level、format、filemode、stream,其中format属性极其丰富,详情可查看API文档,这里只做简要介绍
logging.basicConfig(level = logging.INFO,
  format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s',
  datefmt = "%Y/%m%d %H%M%S",
  filename = "log.txt")
#消息级别,五级
logging.debug("芹泽多摩雄") 
logging.info("真")
logging.warning("男")
logging.error("人")
logging.critical("!")

logging之日志系统的四大组件(日志器、处理器、过滤器、格式器)方式记录日志

import logging
# 生成日志实例,日志器
logger = logging.getLogger(__name__)
#基本单元的配置(LEVER)
logger.setLevel(level = logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
#生成管道分支,处理器
handler_1 = logging.FileHandler("log.txt")
handler_2 = logging.StreamHandler()
#自定义格式,格式器
handler_1.setFormater(formatter, “%Y-%m-%d %H:%M:%S”)
handler_2.setFormater(formatter, “%Y-%m-%d %H:%M:%S”)
#对接分支管道与源头,处理器
logger.addHandler
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值