最近疫情被隔离在家,准备研究一下python的机器学习,看了一些资料。也逛了逛论坛。
机器学习的实例真是太多了,让人眼花缭乱,更加懵逼了。通俗来说,主要两个方面,比较浅层次的就是机器学习,最后才是深度学习。
主要过程就是通过一定的算法来训练大量的数据产生一个数据模型,最后再利用这个模型来分析或计算出出最接近于实际情况的结果。
大概理解了意思之后,我就不再去深究了,直接搞个实例来试试看什么效果。至于更深层级的东西,我比较喜欢在实战中慢慢体会。
1、准备
今天实践的是python中的opencv这个库,至于这个库官方肯定比我解释的更加准确,下面是官方的解释。
OpenCV是一个基于Apache2.0许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。
没有opencv环境的将opencv先安装一下,为避免版本不一样导致出现问题,我这里在安装命令中将版本号写了出来。
pip install opencv-python==4.6.0.66
python解释器使用的版本是3.8.6,我这里测试使用的是这两个版本是没有问题的。
2、代码
下面是整个业务的实现过程,haarcascade_frontalface_default.xml训练模型我是直接在girhub上面下载的。所以这里并没有对数据训练的实现,使用的是别人训练好的模型。
后面的学习中,我会慢慢训练出自己的模型来使用,其实不用自己训练数据模型的话代码量还是比较少的。下面是github的训练模型的下载地址,目前已经2100多的star了。
https://github.com/opencv/opencv/tree