【leetcode】4. Median of Two Sorted Arrays

Difficulty:Hard

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Example 1:

nums1 = [1, 3]
nums2 = [2]

The median is 2.0

Example 2:

nums1 = [1, 2]
nums2 = [3, 4]

The median is (2 + 3)/2 = 2.5

解题思路(时间复杂度O(log n)):

按照题目要求的时间复杂度,如果再用归并的方法会超时,归并的时间复杂度为O(n),这不符合题目要求,所以考虑采用分治的方法。

首先必须得到一个关系,题目中要求查找到最中间的数字,如果对于给出的arr和brr,如果arr[key/2-1]<brr[key/2-1]那么在arr[0]到arr[key/21-1]之间的数字一定在要找的key/2个数字的范围之内,这样就可以在剩余的arr,和整个brr中找到剩余的部分,也就是找到剩余的key-key/2个数字,这样等于从头开始,又变成了跟刚开始的情况相同的问题,所以可以采用分治递归的范式求解。

对于两个数组总共有偶数total个数字,需要找出第total/2个数字,还要找出第total/2+1个数字,而如果有奇数个数字,就只需要找到第total/2+1个数字。

所以剩下的部分就是考虑递归结束的条件以及各种情况的判断。

首先考虑如果arr的长度大于brr的长度,那么在寻找第total/2个数字的时候,可能出现划分之后已经被计入的数组多于total/2个数字,所以要保证arr的长度小于brr。

递归结束的判断条件就是当需要找到最后一个数字的时候,那么只需要找到在arr和brr中最小的数字即可。

代码如下:

int find(int *arr,int a,int b,int *brr,int c,int d,int key)
{
	if((b-a)>(d-c)) return find(brr,c,d,arr,a,b,key);
	if(b-a==0) return brr[c+key-1];
	if(key==1) 
	{
		if(arr[a]<brr[c]) return arr[a];
		else return brr[c];
	}
	int p;
	if(key/2<b-a) p=key/2;
	else p=b-a;
	int q=key-p;
	if(arr[a+p-1]<brr[c+q-1]) return find(arr,a+p,b,brr,c,d,key-p);
	else if(arr[a+p-1]>brr[c+q-1]) return find(arr,a,b,brr,c+q,d,key-q);
	else return arr[a+p-1];
    return 0;
}

double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) {
    long long int a=0;
    long long int b=nums1Size;
    long long int c=0;
    long long int d=nums2Size;
    long long int total=b+d;
    double ans=0;
    if(total%2==1) ans=find(nums1,a,b,nums2,c,d,total/2+1)*1.0;
    else 
    {
        long long int i=find(nums1,a,b,nums2,c,d,total/2);
        long long int j=find(nums1,a,b,nums2,c,d,total/2+1);
        ans=(i+j)/2.0;
    }
    return ans;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值