俯仰 (pitch) - 偏摆 (yaw) - 翻滚 (roll)

俯仰 (pitch) - 偏摆 (yaw) - 翻滚 (roll)

1. 机体坐标系

机体坐标系是指固定在飞行器或者飞机上的遵循右手法则的三维正交直角坐标系,其原点位于飞行器的重心,OX 轴位于飞行器参考平面内平行于机身轴线并指向飞行器前方,OY 轴垂直于飞行器参考面并指向飞行器右方,OZ 轴在参考面内垂直于 XOY 平面,指向航空器下方。

在这里插入图片描述

关于右手笛卡尔坐标系的 x-y-z- 轴的旋转分别叫做 rollpitchyaw 旋转。
x-轴的主动旋转定义为:
R x ( θ x ) {\mathcal {R}}_{x}(\theta _{x}) Rx(θx),这里的 θ x \theta _{x} θxroll 角,和右手螺旋的方向相同 (在 yz 平面逆时针)。

y-轴的主动旋转定义为:
R y ( θ y ) {\mathcal {R}}_{y}(\theta _{y}) Ry(θy),这里的 θ y \theta _{y} θypitch 角,和右手螺旋的方向相同 (在 zx 平面逆时针)。

z-轴的主动旋转定义为:
R z ( θ z ) {\mathcal {R}}_{z}(\theta _{z}) Rz(θz),这里的 θ z \theta _{z} θzyaw 角,和右手螺旋的方向相同 (在 xy 平面逆时针)。

Vertical axis (yaw)
偏摆 - yaw - 偏航角
机头右偏航为正。
在这里插入图片描述

Transverse axis (pitch)
俯仰 - pitch - 俯仰角
机头上抬为正。
在这里插入图片描述

Longitudinal axis (roll)
翻滚 - roll - 翻滚角
机体右翻滚为正。
在这里插入图片描述

在这里插入图片描述

2. 六自由度

六自由度是指刚体在三维空间中运动的自由度。特别是指刚体可以在前后、上下、左右三个互相垂直的坐标轴上平移,也可以在三个垂直轴上旋转其方向,三种旋转方向称为俯仰 (pitch)、偏摆 (yaw) 及翻滚 (roll)。

在这里插入图片描述

六个运动的自由度:前后、上下、左右、俯仰 (pitch)、偏摆 (yaw)、翻滚 (roll)

2.1 三个平移自由度与三个旋转自由度

平移:
沿 X 轴前后移动
沿 Y 轴左右移动
沿 Z 轴上下移动

旋转:
绕 X 轴旋转 (翻滚 - roll - 翻滚角)
绕 Y 轴前后旋转 (俯仰 - pitch - 俯仰角)
绕 Z 轴左右旋转 (偏摆 - yaw - 偏航角)

roll [rəʊl]:vt. 滚动,辗,使 (眼球等) 左右转动,(使) 原地转圈 vi. 翻滚,左右摇晃,开始移动,启动 n. 名册,滚翻
pitch [pɪtʃ]:n. 音高,场地,最高点,说教 vt. 用沥青涂,扔,投,树起,搭起,定位于 vi. 抛,扔,当投手,搭帐篷,向前跌或冲
yaw [jɔ:]:vi. (船) 偏航,偏离航线,(飞机) 偏航

在这里插入图片描述
Roll, yaw and pitch axis definition for an airplane.

使用右手坐标系的时候,常见的映射是把向前对应正 z 轴,向左对应正 x 轴,向上对应正 y 轴。同样常见的是 +x 代表向前、+z 代表向右。对游戏引擎唯一要求是贯彻使用统一协定。

在这里插入图片描述

在 3D 系统中,假设视点为原点,则三维空间的右手笛卡尔视点坐标系如下图所示,通常 z 轴的负方向是视点方向 (OpenGL)。
Unreal Engine 使用的是左手坐标系。

在这里插入图片描述

在这里插入图片描述

3. 姿态角 (Euler 角)

姿态角描述当前设备的姿态。姿态的描述依赖于基准坐标系和载体坐标系,如下图所示,基准坐标系 ( x 0 , y 0 , z 0 ) (x_{0}, y_{0}, z_{0}) (x0,y0,z0) 和载体坐标系 ( x 1 , y 1 , z 1 ) (x_{1}, y_{1}, z_{1}) (x1,y1,z1)

在这里插入图片描述

yaw、pitch 和 roll 反应了载体相对基准面的姿态。

在这里插入图片描述

手机定义的坐标系统,X 轴是水平且指向右边,Y 轴是垂直且指向前方,Z 轴指向屏幕的正面正上方。
当手机左右摇摆时 (绕 y 轴旋转),得到变化的滚转角 (roll),范围为 (-90 to 90)
当手机前后摇摆时 (绕 x 轴旋转),得到变化的俯仰角 (pitch),范围为 (-180 to 180)
当手机横屏转换成竖屏或竖屏转换成横屏时 (绕 z 轴旋转),得到变化的偏航角 (yaw)。

4. flight dynamics - 飞行动力学

在这里插入图片描述

在这里插入图片描述
yaw or heading angle definition

longitudinal [,lɒn(d)ʒɪ'tjuːdɪn(ə)l; ,lɒŋgɪ-]:adj. 长度的,纵向的,经线的

在这里插入图片描述
pitch angle definitio

zenith ['zenɪθ]:n. 顶峰,顶点,最高点
nadir ['neɪdɪə; 'nædɪə] :n. 最低点,最底点,天底
horizontal [hɒrɪ'zɒnt(ə)l]:adj. 水平的,地平线的,同一阶层的 n. 水平线,水平面,水平位置

在这里插入图片描述
roll angle definition

### Roll Pitch Yaw 坐标系转换 在多传感器融合环境中,Roll (滚动角), Pitch (俯仰)Yaw (航角) 的定义对于理解车辆或其他载体的姿态至关重要。这些角度用于描述物体相对于惯性坐标系的方向变化。 #### 1. 欧拉角与旋转矩阵之间的关系 为了实现从一种坐标系到另一种坐标系的变换,可以先将欧拉角转化为旋转矩阵。给定一组 roll, pitchyaw 角度,可以通过下面的方式构建对应的旋转矩阵 R: ```python import numpy as np def euler_to_rotation_matrix(roll, pitch, yaw): Rx = np.array([[1, 0, 0 ], [0, np.cos(roll), -np.sin(roll)], [0, np.sin(roll), np.cos(roll)]]) Ry = np.array([[ np.cos(pitch), 0, np.sin(pitch)], [0 , 1, 0 ], [-np.sin(pitch), 0, np.cos(pitch)]]) Rz = np.array([[np.cos(yaw), -np.sin(yaw), 0], [np.sin(yaw), np.cos(yaw), 0], [0 , 0 , 1]]) # 组合得到最终的旋转矩阵 R = Rz @ Ry @ Rx return R ``` 此函数接受三个参数 `roll`, `pitch` 和 `yaw` 并返回相应的旋转矩阵[^3]。 #### 2. 多传感器数据的时间同步 由于不同的传感器可能具有各自独立的工作频率,在实际应用中需要注意时间戳的一致性和校准问题。当 GNSS 接收机、IMU 或者其他类型的传感器共同工作时,确保它们所记录的数据是在同一时刻发生的非常重要。这涉及到硬件层面的设计以及软件算法上的补偿措施[^2]。 #### 3. 实际案例:GNSS/INS 融合系统中的姿态解算 在一个典型的基于 GNSS 和 INS(Inertial Navigation System)组合导航的应用场景下,通过对 IMU 提供的速度增量积分可以获得短时间段内的相对位移;而利用 GNSS 测量绝对地理位置,则能修正累积误差并提供全局参照框架下的精确定位服务。此时,通过上述方法计算出来的旋转矩阵可以帮助完成局部坐标系向世界坐标系的映射过程[^1]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值