hdu 1102 kruskal

本文详细介绍了如何使用Kruskal算法解决最小生成树问题,并通过一个具体的编程实例展示了算法的具体实现过程,包括输入矩阵的处理、并查集的应用以及如何找到最小生成树所需的边。

题目: http://acm.hdu.edu.cn/showproblem.php?pid=1102

本题的给输入是矩阵的存储,但最后又给出已经修好的路,所以我先用矩阵存储输入,再将其中的边提出来,用

struct Edge{
int u,v,w;
};

存储,因为下面用kruskal就方便了。(这个题目首先你要知道用kruskal)

对于已经修好的路的顶点,用并查集合并其顶点集合。

接下来扫描顶点1到N,找出其父亲结点,我用set<int> rgSet存储,很方便找出1到N化分成的集合数目。

然后就是再加入minnum条边就行了。

#include <iostream>
#include <cstdio>
#include <functional>
#include <set>
#include <algorithm>
using namespace std;

#define MAXV 111
#define INF 32767
struct Tree {
	int parent;
	int rank;
} t[MAXV];
struct Edge {
	int u, v, w;
	bool operator <(const Edge &elem) const {
		return w < elem.w;
	}
} edge[MAXV*MAXV];
struct Graph {
	int matrix[MAXV][MAXV];
	int n;
};
void Make_Set(int n) {
	int i;
	for (i = 0; i <= n; ++i) {
		t[i].parent = i;
		t[i].rank = 0;
	}
}
int Find_Set(int x) {
	int i, j, r;
	r = x;
	while (t[r].parent != r) {
		r = t[r].parent;
	}
	i = x;
	while (t[i].parent != r) {
		j = t[i].parent;
		t[i].parent = r;
		i = j;
	}
	return r;
}
int Union_Set(int x, int y) {
	if (t[x].rank > t[y].rank) {
		t[y].parent = x;
		return x;
	} else {
		t[x].parent = y;
		if (t[x].rank == t[y].rank)
			t[y].rank++;
		return y;
	}
}
int Kruskal(int N,int E) {
	int i, j, a, b, Q;
	int s1, s2;
	int ret = 0;
	sort(edge, edge + E);		// 注意这里是对边sort
	Make_Set(N);				// 这里是对顶点集合1到N初始化, 这两行的别晕了,run time error 好多次才找出来。。汗。。
	//	----------------
	scanf("%d", &Q);
	for (i = 0; i < Q; ++i) {
		scanf("%d%d", &a, &b);
		a = Find_Set(a);
		b = Find_Set(b);
		if (a != b)
			Union_Set(a, b);
	}
	set<int> rgSet;
	for(i=1;i<=N;++i)
		rgSet.insert(Find_Set(i));

	i=rgSet.size();
	i-=1;
	j = 0;
	while (i > 0) {
		s1 = Find_Set(edge[j].u);
		s2 = Find_Set(edge[j].v);
		if (s1 != s2) {
			Union_Set(s1, s2);
			ret += edge[j].w;
			--i;
		}
		++j;
	}
	rgSet.clear();
	return ret;
}
int main() {
//	freopen("input.txt", "r", stdin);
	int N,E;
	int i, j;
	Graph g;
	while (scanf("%d", &N) != EOF) {
		E=0;
		for (i = 0; i < N; ++i)
			for (j = 0; j < N; ++j)
				scanf("%d", &g.matrix[i][j]);
		for (i = 0; i < N; ++i)
			for (j = i + 1; j < N; ++j) {
				edge[E].u = i+1;
				edge[E].v = j+1;
				edge[E].w = g.matrix[i][j];
				E+=1;
			}
		printf("%d\n", Kruskal(N,E));
	}
	return 0;
}



 

【2024亚太杯ABCD题】亚太地区大学生数学建模竞赛(思路、代码、论文持续更新中.......)内容概要:本文档为2024及2025年亚太地区大学生数学建模竞赛(APMCM)的备赛资源汇总,涵盖A、B、C、D四道赛题的思路解析、MATLAB/Python代码实现及论文写作指导,内容持续更新。资源涉及多个技术方向,包括无人机回收系统动力学建模(高斯原理)、非线性模型预测控制(MPC)、储能系统经济性优化、可重构电池故障诊断、电力系统机组组合的量子优化、裂纹检测、卡尔曼滤波目标跟踪、路径规划(UGV/UAV协同)、MIMO通信系统、天线物理边界计算等。同时提供大量科研技术支持,覆盖机器学习与深度学习(如LSTM、CNN、Transformer等在负荷、光伏、风电预测中的应用)、图像处理、信号处理、雷达追踪、电力系统优化、车间调度、元胞自动机模拟等多个领域,并附有智能优化算法(如粒子群、遗传算法、新型群智算法)在各类工程问题中的实现案例。; 适合人群:具备一定数学建模基础、熟练掌握MATLAB或Python编程的高校本科生、研究生,尤其是准备参加亚太杯、全国大学生数学建模竞赛或其他科研项目的参赛者与科研人员。; 使用场景及目标:①为亚太杯数学建模竞赛提供完整的解题思路、代码支持与论文参考,帮助快速构建高质量解决方案;②作为科研项目的技术参考资料,
内容概要:本文档为“澎湃创想”人像摄影工作室的启动与运营体系搭建项目管理计划书,旨在赣州市章贡区创建一家定位高端、个性化艺术人像摄影的工作室。项目采用预测型生命周期,通过WBS分解为场地建设、设备采购、团队组建、系统搭建和正式开业五大工作包,明确范围、进度与成本三大基线。项目总工期控制在D+45天内,成本基线为28万元,关键路径为场地装潢(31.6天)。通过S曲线、EVM等工具进行成本与进度控制,并设定年销售额35万元的盈亏平衡点。项目重点管理质量、风险与干系人,采用RACI矩阵明确6人核心团队职责,识别十大风险并制定应对策略,尤其关注市场竞争与人才流失问题。; 适合人群:具备项目管理基础知识,从事创业项目策划、小型文化创意企业运营或项目执行的相关人员,尤其是摄影、艺术类初创企业负责人及项目管理者。; 使用场景及目标:①用于指导人像摄影工作室从零到一的系统化筹建与运营管理;②学习如何运用WBS、PDM、EVM、风险矩阵等PMI工具进行实际项目规划与控制;③掌握初创企业在资源有限条件下如何进行成本控制、进度管理和风险应对。; 阅读建议:此计划书结构完整,涵盖十大知识领域,建议结合项目管理知识体系(如PMBOK)进行对照学习,重点关注其基线制定、风险应对策略与干系人管理方法,并可在实际创业项目中参考其执行与监控机制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值