xiaotan1314

爱逛知乎的小小小白~~~、、

HDU1102(最小生成树Kruskal算法)

Constructing Roads

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 19847    Accepted Submission(s): 7594


Problem Description
There are N villages, which are numbered from 1 to N, and you should build some roads such that every two villages can connect to each other. We say two village A and B are connected, if and only if there is a road between A and B, or there exists a village C such that there is a road between A and C, and C and B are connected.

We know that there are already some roads between some villages and your job is the build some roads such that all the villages are connect and the length of all the roads built is minimum.
 

Input
The first line is an integer N (3 <= N <= 100), which is the number of villages. Then come N lines, the i-th of which contains N integers, and the j-th of these N integers is the distance (the distance should be an integer within [1, 1000]) between village i and village j.

Then there is an integer Q (0 <= Q <= N * (N + 1) / 2). Then come Q lines, each line contains two integers a and b (1 <= a < b <= N), which means the road between village a and village b has been built.
 

Output
You should output a line contains an integer, which is the length of all the roads to be built such that all the villages are connected, and this value is minimum.
 

Sample Input
3 0 990 692 990 0 179 692 179 0 1 1 2
 

Sample Output

179

首先将已有的顶点放入集合中,然后再kruskal

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

struct node {
	int u, v, w;
}edge[10010];

#define mem(a) memset(a, 0, sizeof(a))
int par[110]; 
int cmp(node a, node b) {
	return a.w < b.w;
}

int find(int a) {
	if (a != par[a])	return find(par[a]);
	else	return a;
}

int kruskal(int n, int num) {
	int ans = 0;
	sort(edge, edge+num, cmp);
	
	for (int i = 0; i<num; i++) {
		int x = edge[i].u, y = edge[i].v;
		x = find(x), y = find(y);
		if (x != y) {
			ans += edge[i].w;
			par[y] = x;
		}
	}
	return ans;
}

int main() {
	int n;
	while (cin >> n) {
		mem(edge);
		mem(par);
		int num = 0;
		for (int i = 1; i<=n; i++) {
			for (int j = 1; j<=n; j++) {
				int k;
				cin >> k;
				if (i >= j)	continue;
				edge[num].u = i;
				edge[num].v = j;
				edge[num++].w = k;
			}	
		}
		for (int i = 1; i<=n; i++)	par[i] = i;
		int q;
		cin >> q;
		while (q --) {
			int x, y;
			cin >> x >> y;
			x = find(x);
			y = find(y);
			par[x] = y;
		}
		cout << kruskal(n, num) << endl;
	}
	return 0;
}



阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xiaotan1314/article/details/51558391
文章标签: kruskal hdu
个人分类: ACM_HDU ACM_图论
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

HDU1102(最小生成树Kruskal算法)

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭