###### HDU1102(最小生成树Kruskal算法)

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 19847    Accepted Submission(s): 7594

Problem Description
There are N villages, which are numbered from 1 to N, and you should build some roads such that every two villages can connect to each other. We say two village A and B are connected, if and only if there is a road between A and B, or there exists a village C such that there is a road between A and C, and C and B are connected.

We know that there are already some roads between some villages and your job is the build some roads such that all the villages are connect and the length of all the roads built is minimum.

Input
The first line is an integer N (3 <= N <= 100), which is the number of villages. Then come N lines, the i-th of which contains N integers, and the j-th of these N integers is the distance (the distance should be an integer within [1, 1000]) between village i and village j.

Then there is an integer Q (0 <= Q <= N * (N + 1) / 2). Then come Q lines, each line contains two integers a and b (1 <= a < b <= N), which means the road between village a and village b has been built.

Output
You should output a line contains an integer, which is the length of all the roads to be built such that all the villages are connected, and this value is minimum.

Sample Input
3 0 990 692 990 0 179 692 179 0 1 1 2

Sample Output

179

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

struct node {
int u, v, w;
}edge[10010];

#define mem(a) memset(a, 0, sizeof(a))
int par[110];
int cmp(node a, node b) {
return a.w < b.w;
}

int find(int a) {
if (a != par[a])	return find(par[a]);
else	return a;
}

int kruskal(int n, int num) {
int ans = 0;
sort(edge, edge+num, cmp);

for (int i = 0; i<num; i++) {
int x = edge[i].u, y = edge[i].v;
x = find(x), y = find(y);
if (x != y) {
ans += edge[i].w;
par[y] = x;
}
}
return ans;
}

int main() {
int n;
while (cin >> n) {
mem(edge);
mem(par);
int num = 0;
for (int i = 1; i<=n; i++) {
for (int j = 1; j<=n; j++) {
int k;
cin >> k;
if (i >= j)	continue;
edge[num].u = i;
edge[num].v = j;
edge[num++].w = k;
}
}
for (int i = 1; i<=n; i++)	par[i] = i;
int q;
cin >> q;
while (q --) {
int x, y;
cin >> x >> y;
x = find(x);
y = find(y);
par[x] = y;
}
cout << kruskal(n, num) << endl;
}
return 0;
}

#### HDU1102 prim 最小生成树

2012-11-30 19:09:22

#### HDU 1102 最小生成树

2015-02-02 16:19:33

#### HDU1102 - Constructing Roads 用优先队列优化Prim最小生成树

2015-08-27 14:55:13

#### hdu1102 最小生成树

2016-09-09 09:25:56

#### HDU1102并查集和最小生成树

2016-02-03 19:20:21

#### hdu1102

2014-03-09 23:16:30

#### hdu 1102

2014-03-08 20:25:01

#### hdu1102最小生成树

2016-03-24 11:23:26

#### hdu1102最小生成树（prim）

2016-11-26 11:26:12

#### hdu1102绝对模板

2010-07-25 17:27:00

## 不良信息举报

HDU1102(最小生成树Kruskal算法)