1. 归并法求解问题的最优解
基本思路:(1) 将一定规模的问题划分为两个规模相等的子问题;由两个子问题的解可以求出该问题的最优解;
(2) 划分子问题的规模一直到不能划分为止,即直到最小规模的子问题,然后将子问题的解组合成父问题的解。
2. 代码如下:
#include <stdio.h>
#include <stdlib.h>
typedef struct Array
{
int left;
int right;
int sum;
}ARRAY,*ARRAYPOINT;
//此函数类似于归并排序里的合并函数
void FIND_MAX_CROSSING_SUBARRAY(int *A,int low,int mid,int high, ARRAY *max)
{
max->left=mid;
max->right=mid+1;
int left_sum=A[mid];
int sum = left_sum;
for(int i=mid-1;i>=low;--i)
{
sum += A[i];
if(sum > left_sum)
{
left_sum=sum;
max->left=i;
}
}
max->sum = left_sum;
int right_sum = A[mid+1];
sum = right_sum;
for(int j=mid+2;j<=high;++j)
{
sum+=A[j];
if (sum > right_sum)
{
right_sum = sum;
max->right = j;
}
}
max->sum += right_sum;
return ;
}
void FIND_MAXIMUM_SUBARRAY(int *A,int low,int high, ARRAY *max)
{
if(low==high)
{
max->left=max->right=low;
max->sum=A[low];
return ;
}
else
{
int mid=(low+high)/2;
ARRAY left_max,right_max,cross_max;
FIND_MAXIMUM_SUBARRAY(A,low,mid, &left_max);
FIND_MAXIMUM_SUBARRAY(A,mid+1,high, &right_max);
//类似于归并排序里的合并
FIND_MAX_CROSSING_SUBARRAY(A,low,mid,high, &cross_max);
if(left_max.sum>=right_max.sum&&left_max.sum>=cross_max.sum) {
max->left = left_max.left;
max->right = left_max.right;
max->sum = left_max.sum;
}
else if(right_max.sum>=left_max.sum&&right_max.sum>=cross_max.sum) {
max->left = right_max.left;
max->right = right_max.right;
max->sum = right_max.sum;
}
else {
max->left = cross_max.left;
max->right = cross_max.right;
max->sum = cross_max.sum;
}
return ;
}
}
int main(void)
{
int A[]={13,-3,-25,20,-3,-16,-23,18,20,-7,12,-5,-22};
ARRAY max;
FIND_MAXIMUM_SUBARRAY(A,0,sizeof(A)/sizeof(A[0])-1, &max);
printf("最大子数组从第%d个元素开始,到第%d个元素结束\n",max.left+1,max.right+1);
printf("其和为:%d\n",max.sum);
return 0;
}
3. 本博客参考http://www.fx114.net/qa-115-367694.aspx
本博客贴的代码经过测试,可以直接运行输出正确结果