数据结构与算法笔记:基础篇 - 排序(下):如何用快排思想在O(n)内查找第k大元素?

概述

上篇文章,我们讲解了冒泡排序、插入排序、选择排序这三种排序算法,它们的时间复杂度都是 O ( n 2 ) O(n^2) O(n2) 。本章讲解两种时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn) 的排序算法,归并排序快速排序。这两种算法适合大规模数据的排序,比上篇文章讲解的三个排序算法要更常用。

归并排序和快速排序都用到了分支思想,非常巧妙。我们可以借鉴这个思想,来解决非排序问题,比如:如何在O(n)的时间复杂度内内查找一个无序数组中的第k大元素?


归并排序的原理

归并排序的核心思想还是比较简单的。如果要排序一个数组,我们先把数组从中间分成 前后两部分,然后对前后两部分分别排序,再将排好的两部分合并在一起,这样,整个数组就都有序了。
在这里插入图片描述
归并排序使用的就是分治思想。分治,顾名思义,就是分而治之,将一个大问题分解成小的子问题来解决。小的子问题解决了,大问题也就解决了。

通过刚才的描述,不知道你有没有发现,分治思想跟我们之前讲过的递归思想很像。是的,分治算法一半都是用递归来实现的。分治是一种解决问题的处理思想,递归是一种编程技巧,这两种并不冲突。分治算法的思想后面还会专门用一章来讲解,现在就不展开讨论了,本章的重点还是排序算法。

现在就来看看如何用递归代码实现归并排序。

递归代码的编码你还记得吗?写递归代码的技巧是,分析得出递推公式,然后找到终止条件,最后将递推公式翻译成递归代码。所以,要写出归并排序的代码,要先写出归并排序的递推公式。

递推公式:

  • merg_sort(p…r) = merge(merge_sort(p…q), merge_sort(q+1…r))

终止条件:

  • p >= r,不用再继续分解

merg_sort(p...r) 表示,给下标从 pr 之间的数组排序。我们将这个排序问题转化为了两个子问题, merge_sort(p...q)merge_sort(q+1...r),其中下标 q 等于 pr 的中间位置,也就是 (p+r)/2。当下标从 pq 和 从 q+1r 这两个子数组都排好序之后,这样下标从 pr 之间的数据也就排好序了。

有了递推公式,转化成代码就简单多了。下面只给出了伪代码,你可以自行翻译成你熟悉的编程语音。

// 归并排序算法,A是数组,n表示数组大小
merg_sort(A, n) {
	merg_sort_c(A, 0, n-1);
}

// 递归调用函数
merg_sort_c(A, p, r) {
	// 递归终止条件
	if (p >= r) return;
	
	// 取p到r之间的中间位置q
	q = (p + r) / 2;
	// 分治递归
	merg_sort_c(A, p, q);
	merg_sort_c(A, q + 1, r);
	// 将A[p...q]和A[q+1...r]合并为A[p...r]
	merge(A[p...r], A[p...q], A[q+1...r])
}

你可能已经发现了, merge(A[p...r], A[p...q], A[q+1...r]) 这个函数的作用就是,将已经有序的 A[p...q]A[q+1...r] 合成一个有序的数组,并且放入 A[p...r]。那这个过程具体如何做呢?

如图所示,我们申请一个临时数组 tmp,大小与 A[p...r] 相同。我们分别用两个游标 ij,分别指向 A[p...q]A[q+1...r] 的第一个元素。比较这两个元素 A[i]A[j],如果 A[i] <= A[j],我们就把 A[i] 放到临时数组 tmp,并且 i 后移一位,否则将 A[j] 放到数组 tmpj 后移一位。

继续上述比较过程,直到其中一个子数组中的所有数据都放入临时数组中,再把另一个数组中的数据一次加入到临时数组的末尾,这个时候,临时数组中存储的就是两个子数组合并之后的结果了。最后再把临时数组 tmp 中的数据拷贝到原始数组 A[p...r] 中。
在这里插入图片描述
我们把 merge() 函数写成伪代码,就是下面这样:

merge(A[p...r], A[p...q], A[q+1,...,r]) {
	var i = p, j= q + 1, k=0; // 初始化变量 i,j,k
	var tmp = new array[0,...r-p] // 申请一个大小跟A[p...r]一样的临时数组
	while (i<=q and j<=r) {
		if(A[i] <= A[j]) {
			tmp[k++] = A[i++]; 
		} else {
			tmp[k++] = A[j++]; 
		}
	}
	// 判断哪个子数组中有剩余的数据
	var start = i, end = q;
	if (j <= r) {
		start = j;
		end = r;
	}
	// 将剩余的数据拷贝到临时数组tmp
	while (start <= end) {
		tmp[k++] = A[start++]; 
	}
	// 将tmp中的数组拷贝回A[p...r]
	for (i=0; i<r-p; i++) {
		A[p+i]=tmp[i]
	}
}

归并排序性能分析

还记得上篇文章,我们分析排序算法的三个问题吗?

第一,归并排序是稳定的排序算法吗?

结合前面的图和归并排序的伪代码,你应该能发现,归并排序稳不稳定关键要看 merge() 函数,也就是两个有序子数组合并成一个有序数组的那部分代码。

在合并过程中,如果 A[p...q]A[q+1...r] 之间有相同的元素,那我们可以像伪代码哪一种样,先把 A[p...q] 中的元素放入 tmp 数组。这样就保证了值相同的元素,在合并前后的先后顺序不变。所以,归并排序是一个稳定的排序算法

第二,归并排序的时间复杂度是多少?

归并排序设计递归,时间复杂度的分析稍微有点复杂。正好借此机会来学习下,如何分析递归代码的时间复杂度。

在递归那一节我们讲过,递归的使用场景是,一个问题 a 可以分解为多个子问题 b,c,那求解问题 a 就可以分解为求解问题 b、c。问题 b、c 解决之后,再把问题 b、c 的结果合并成 a 的结果。

如果,我们定义求解问题 a 的时间是 T(a),求解问题 b、c 的时间分别是 T(b)T(c),那我们就可以得到这样的递推关系式:

T(a) = T(b) + T© + k

其中 k 等于将两个子问题合并成问题 a 的结果所消耗的时间。

从刚刚的分析可以看出:不仅递归求解的问题可以写成递推公式,递归代码的时间复杂度也可以写成递推公式。

套用这个公式,我们来分析下归并排序的时间复杂度。

假设对 n 个元素进行归并排序需要的时间是 T(n),那分解两个子数组排序的时间都是 T(n/2)。我们知道 merge() 函数合并两个有序数组的时间复杂度是 O ( n ) O(n) O(n)。所以套用前面的公式,归并排序的时间复杂度的计算公式是:

T(1) = C; n = 1时,只需要常量级的执行时间,所以表示为 C。
T(n) = 2 * T(n/2) + n; n>1

通过这个公式,如何来求解 T(n) 呢?

T(n) = 2 * T(n/2) + n
= 2 * (2*T(n/4) + n/2 ) + n = 4 * T(n/4) + 2*n
= 4 * (2*T(n/8) + n/4 ) + 2*n = 8 * T(n/8) + 3*n
= 8 * (2*T(n/16) + n/8) + 3*n = 16 * T(n/16) + 4*n

= 2^k * T(n/2^k) + k * n

通过这样一步步的推导,可以得到 T(n) = 2^k *T(n/2^k) + k * n。当 T(n/2^k) = T(1) 时,也就是 n/2^k = 1,我们得到 k = l o g 2 n k=log_2n k=log2n。我们将 k 值带入上面的公式,得到 T ( n ) = C n + n l o g 2 n T(n) = Cn + nlog_2n T(n)=Cn+nlog2n。如果用大 O 标记法来表示的话,T(n) 就等于 n l o g n nlogn nlogn。所以归并排序的时间复杂度是 O ( n l o g n ) O(nlogn) O(nlogn)

从我们的原理分析和伪代码可以看出,归并排序的执行效率与要排序的原始数组的有序程序无关,所以,其时间复杂度是非常稳定的,不管是最好、最坏、平均情况时间复杂度都是 O ( n l o g n ) O(nlogn) O(nlogn)

归并排序的空间复杂度

归并排序的时间复杂度任何情况下都是 O ( n l o g n ) O(nlogn) O(nlogn),看起来非常优秀。(待会你会发现,即便是快速排序,最坏情况下,时间复杂度也是 O ( n 2 ) O(n^2) O(n2)。),但是,归并排序并没像快速排序那样,应用广泛,这是为什么呢?因为它有一个致命的 “弱点”,那就是归并排序并不是原地排序算法

这是因为归并排序的合并函数,在合并两个有序数组为一个有序数组时,需要借助额外的存储空间。这一点你应该很容易理解。那归并排序的空间复杂度到底是多少呢?

如果我们继续按照分析递归时间复杂度的方法,通过递推公式来求解,那整个归并过程需要的空间复杂度就是 O ( n l o g n ) O(nlogn) O(nlogn)。不过,类似分析时间复杂度那样来分析空间复杂度,是否合适呢?

实际上,递归代码的空间复杂度并不能像时间复杂度那样累加。刚刚我们忘记了最重要的一点,那就是,尽管每次合并草坪做都需要申请额外的内存,但在合并之后,临时开辟的内存空间就被释放了。在任意时刻,CPU 只会有一个函数在执行,也就是只会有一个临时的内存空间在使用。临时内存空间最大也不会超过 n 个数据的大小,所以,空间复杂度是 O ( n ) O(n) O(n)

快速排序原理

我们再来看下快速排序算法(Quicksort),我们习惯把它简称 “快排”。快排利用的也是分治思想。咋看起来,它有点像归并排序,但是思路其实完全不一样。待会会讲解两者的区别,现在,先看下快排的核心思想。

快排的思想是这样的:如果要排序数组下标从 pr 之间的一组数据,我们选择 pr 的任意一个数据作为 pivot (分区点)。

我们遍历 pr 之间的数据,将小于 pivot 的放到左边,将大于 pivot 的放到右边,将 pivot 放到中间。经过这一步骤之后,数组 pr 之间的数据被分成了三个部分,前面 pq-1 之间都是小于 pivot 的,中间是 pivot,后面 q+1r 都是大于 pivot 的。

在这里插入图片描述
根据分支、递归的处理思想,我们可以用递归排序下标从 pq-1 之间的数据和下标从 q+1r 之间的数据,直到区间缩小为 1,就说明所有的数据都有序了。

如果用递推公式将上面的过程写出来的话,就是这样:

递推公式:
quick_sort(p...r) = quick_sort(p...q-1) + quick(q+1...r)

终止条件:
p>=r

我们将递推公式翻译成代码:

// 快速排序,A是数组,n表示数组的大小
quick_sort(A, n) {
	quick_sort_c(A, 0, n-1);
}

// 快速排序递归函数,p,r为下标
quick_sort_c(A, p, r) {
	if (p>=r) {
		return;
	}
	
	q = partition(A, p, r); //获取分区点
	quick_sort_c(A, p, q-1);
	quick_sort_c(A, q+1, r);
}

归并排序中有个 merge() 合并函数,快排中有一个 partition() 分区函数。 partition() 分区函数实际上我们前面已经讲过了,就是随机选择一个元素作为 pivot(一般情况下,可以选择 pr 区间最后一个元素),然后对 A[p...r] 分区,返回 pivot 下标。

如果不考虑框架消耗的话, partition() 分区函数可以写的非常简单。我们申请两个临时数组 XY,遍历 A[p...r],将小于 pivot 的元素都拷贝到临时数组 X,将大于 pivot 的元素都拷贝到临时数组 Y,最后再将数组 XY 中数据顺序拷贝到 A[p...r]
在这里插入图片描述
但是,如果按照这种思路实现的话, partition() 函数就需要很多额外的内存空间。所以快排就不是原地排序算法了。如果我们希望快排是原地排序算法,那它的空间复杂度得是 O ( 1 ) O(1) O(1),那 partition() 分区函数就不能占用太多额外的内存空间,我们需要再 A[p...r] 的原地完成分区操作。

原地分区函数的实现思路非常巧妙,下面的伪代码。

partition(A, p, r) {
	pivot = A[r];
	i = p;
	for (j=p; j < r-1; j++) {
		if (A[j] < povit) {
			swap A[i] with A[j]
			i = i+1
		}
	}
	swap A[i] with A[r]
	return i;
}

这里的处理有点类似选择排序。通过游标 iA[p...r] 分成两部分。A[p...i-1] 的元素都是小于 pivot 的,我们暂且加它 “已处理区”,A[i...r-1] 是 “未处理区”。我们每次都从未处理的区间 A[i...r-1] 中取一个元素 A[j],与 pivot 对比,如果小于 pivot,则将其放到已处理区的尾部,也就是 A[i] 的位置。

数组的插入操作还记得吗?在数组某个位置插入元素,需要搬移数据,非常耗时。当时我们也讲了一种处理技巧,就是交换,在 O ( 1 ) O(1) O(1) 的时间复杂度内完成插入操作。这里我们也借助这个思想,只要将 A[i]A[j] 交换,就可以在 O ( 1 ) O(1) O(1) 时间复杂度内将 A[j] 放到下标为 i 的位置。

文字不如图直观,下面画了一张图来展示分区的过程。

在这里插入图片描述
因为分区的过程设计交换操作,如果数组中两个相同的元素,比如序列 6,8,7,6,3,5,9,4,在经过第一次分区操作后,两个 6 相对先后顺序会改变。所以快速排序并不是一个稳定的排序算法。

到此,快速排序的原理你应该掌握了。现在,再看下另一个问题:快排和归并用的都是分治思想,递推公式和递归代码也非常相似,那它们的区别在哪里呢?

在这里插入图片描述
可以发现,归并排序的处理构成是由下到上的,先处理子问题,然后再合并。而快排正好相反,它的处理过程是由上到下的,先分区,再处理子问题。归并排序虽然是稳定的、时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn) 的排序算法,但它不是原地算法。前面讲过归并排序之所以是非原地排序算法,主要原因是合并函数无法在原地执行。快速排序通过设计巧妙的原地分区函数,可以实现元原地排序,解决了归并排序占用太多内存的问题。

快速排序的性能分析

在讲解快排的实现原理时,已经分析了稳定性和空间复杂度。快排是一种原地不稳定的排序算法。现在我们集中精力来看快排的时间复杂度。

快排也是用递归来实现的。对于递归代码的时间复杂度,前面总结的公式,这里也适用。如果每次分区操作,都能正好把数组分层大小相等的两个小区间,那快排的时间复杂度递推求解公式跟归并排序是相同的,所以快排的时间复杂度也是 O ( n l o g n ) O(nlogn) O(nlogn)

T(1) = C; n = 1时,只需要常量级的执行时间,所以表示为 C。
T(n) = 2 * T(n/2) + n; n>1

但是公式成立的前提是每次没去操作,我们选择的 pivot 都很合适,正好能将大区间对等地一分为二。但实际上这种情况很难实现。

举一个比较极端的例子。如果数组中的数据原来已经是有序的了,比如 1,3,5,6,8。我们每次选择最后一个元素作为 pivot,那每次分区得到的两个区间都是不均等的。我们需要进行大约 n 的分区操作,才能完成快排的整个过程。每次分区我们平均扫描大约 n/2 个元素,在这种情况下快排的时间复杂度由 O ( n l o g n ) O(nlogn) O(nlogn) 退化成了 O ( n 2 ) O(n^2) O(n2)

刚刚讲了两个极端情况下的时间复杂度,一个是分区极其均衡,一个是分区极其不均衡。它们分别对应快排的最好、最坏时间复杂度。那快排的平均时间复杂度是都多少呢?

假设每次分区操作都将区间分为大小为 9:1 的两个小区间。我们继续套用递归时间复杂度的梯队公式,就会变成这样:

T(1) = C; n = 1时,只需要常量级的执行时间,所以表示为 C。
T(n) = T(n/10) + T(9*n/10) + n; n>1

这个公式的递推求解过程非常复杂,虽然可以求解,但不推荐使用这种方法。实际上,递归时间复杂度的求解方法,除了递推公式之外,还有递归树,在后面讲到《树》章节的时候再详细说明,这里先只告诉你一个结论:T(n) 在大部分情况下的时间复杂度都可以做到 O ( n l o g n ) O(nlogn) O(nlogn),只有在极端情况下才会退化到 O ( n 2 ) O(n^2) O(n2)。而且,我们也有很多方法将这个概率讲到最低。在后面的章节会讲解如何来做。

如何用快排思想在O(n)内查找第k大元素

快排的核心思想就是分治分区,我们可以利用分区的思想,来解答开篇的问题: O ( n ) O(n) O(n) 时间复杂度内求无序数组中的第 k 大元素。比如 4,2,5,12,3 这样一组数据,第 3 大元素就是 4

我们选择数组区间 A[0...n-1] 的最后一个元素 A[n-1] 作为 pivot,对数组 A[0...n-1] 原地分区,这样数组就分层了三部分, A[0...p-1]A[p]A[p+1...n-1]

  • 如果 p+1 == k,那 A[p] 就是要求解的元素;
  • 如果 k > p+1,那说明第 k 大元素出现在 A[p+1...n-1] 区间,我们再按照上面的思路递归地在 A[p+1...n-1] 这个区间内查找。
  • 同理,如果 k < p+1,那么就在 A[0...p-1] 区间查找。

在这里插入图片描述
为什么上述解决思路的时间复杂度是 O ( n ) O(n) O(n)

第一次分区查找,我们需要对大小为 n 的数组进行分区操作,需要遍历 n 个元素。第二次分区查找,我们需要对大小为 n/2 的数组元素进行分区操作,需要遍历 n/2 个元素。依次类推,分区遍历元素的个数分别为 nn/2n/4n/8、…直到区间缩小为 1

如果把每次分区遍历的元素个数加起来,就是 n + n/2 + n/4+ n/8 + ... + 1。这是一个等比数列求和,最后的和等于 2n-1。所以,上述解决思路的时间复杂度就位 O ( n ) O(n) O(n)

你可能会输哦,我有个很笨的方法,每次去数组中的最小值,将其移动到数组的最前面,然后在剩下的数组中继续查找最小值,以此类推,执行 k 次,找到的数据不就是第 k 大元素了吗?

不过,时间复杂度就并不是 O ( n ) O(n) O(n)了,而是 O ( k ∗ n ) O(k*n) O(kn)。你可能会说,时间复杂度前面的系数不是可以忽略吗? O ( k ∗ n ) O(k*n) O(kn) 不就是等于 O ( n ) O(n) O(n) 吗?

这个可能不能这么简单的划等号。当 k 比较小的时候,比如 1、2,那最好时间复杂度确实是 O ( n ) O(n) O(n),但当 k 等于 n/2n 时,这种最坏情况下的时间复杂度就是 O ( n 2 ) O(n^2) O(n2) 了。

小结

归并排序和快速排序是两种稍微复杂的排序算法,它们用的都是分治的思想,代码都通过递归来实现,过程非常相似。理解归并排序的重点是理解递推公式和 merge() 合并函数。同理,理解快排的重点是理解递推公式,还有 pattition() 分区函数。

归并排序算法是一种在任何情况下时间复杂度都比较稳定的排序算法,这也使它存在致命的缺点,即归并排序不是原地排序算法,空间复杂度比较高,为 O ( n ) O(n) O(n)。正因为如此,它没有快排应用广泛。

快速排序算法虽然嘴还情况下的时间复杂度是 O ( n 2 ) O(n^2) O(n2),但平均情况下的时间复杂度是 O ( n l o g n ) O(nlogn) O(nlogn)。不仅如此,快排算法时间复杂度退化到 O ( n 2 ) O(n^2) O(n2) 的概率非常小,我们可以通过合理地选择 pivot 来避免这种情况。

  • 19
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值