数据结构与算法笔记:基础篇 - 散列表(上):Word文档中的单词拼写检查功能是如何试下的?

概述

Word 这种文本编辑器你应该经常用吧,那你有没有留意过它的拼写检查功能呢?一旦我们在 Word 里输入一个错误的英文单词,它就会用标红的方式提示 “拼写错误”。Word 的这个单词拼写检查功能,虽然很小但却非常实用。你有没有想过,这个功能是如何实现的?

其实啊,一点儿都不难,只要你学完本章的内容,散列表(Hash table)。你也可以轻松实现这个功能。


散列思想

散列表的英文叫 “Hash Table”,我们平时也叫它 “哈希表” 或者 “Hash 表”。

散列表用的是数组支持按下标随机访问数据的特性,所以散列表其实就是数组的一种扩展,由数组演化而来。可以说,如果没有数组,就没散列表。

假如我们有 89 名选手参加学校运动会。为了方便记录成绩,每个选手胸前都会贴着参赛号码。这 89 名选手的编号依次是 1 到 89。我们希望编程实现一个功能,通过编号快速找到对应地选手信息。你会怎么做?

我们可以把这 89 名选手的信息放在数组里。编号为 1 的选手,我们放到下标为 1 的位置;编号为 2 的选手,我们放到下标为 2 的位置。依次类推,编号为 k 的选手放到下标为 k 的位置。

因为参赛编号跟数组下标一样,当我们需要查询参数编号为 x 的选手时,只需要将下标为 x 的数组元素取出来就可以了,时间复杂度是 O ( 1 ) O(1) O(1)。这样按照编号查找选手的信息,效率不是很高?

实际上,这个例子已经用到了散列表的思想。在这个例子中,参数编号是自然数,并且与数组下标形成一一映射,所以利用数组支持根据下标随机访问的时候,时间复杂度是 O ( 1 ) O(1) O(1) 这一特性,就可以实现快速查找编号对应的选手信息。

你可能会说,这个例子中蕴含的散列思想还不够明显,那我改造下例子。

假设校长说,参数编号不能设置的这么简单,要加上年级、班级这些更详细的信息,所以我们把编号的规则稍微改了下,用 6 位数字表示。比如 051167,其中,前两位 05 表示年级,中间两位 11 表示班级,最后两位还是原来的编号 1 到 89。这个时候,我们该如何存储选手信息,才能够支持通过编号来快速查找选手信息呢?

思路还是跟之前的类似。尽管我们不能直接把编号作为数组下标,但我们可以截取参赛编号的后两位,作为数组下标,来读取数组中的数据。

这就是典型的散列思想。其中,参数选手的编号我们叫做 (key)或关键字。我们用它来表示一个选手。我们把参数编号转化为数组下标的映射方法叫散列函数(或 “Hash 函数” “哈希函数”),而散列函数计算得到的值就叫作散列值(或 “Hash值” “哈希值”)。

在这里插入图片描述

通过这个例子,我们可以总结出这样的规律:散列表用的就是数组支持按下标随机访问的时候,时间复杂度是 O ( 1 ) O(1) O(1) 的特性。我们通过散列函数把元素的键值映射为下标,然后将数据存储在数组中对应下标的位置。当我们按照键值查询元素时,我们用通用的散列函数,将键值转化为数组下标,从对应的数组下标的位置取数据。

散列函数

从上面的例子,可以看到,散列函数在散列表中起着非常关键的作用。

散列函数,顾名思义,它是一个函数。我们可以把它定义成 hash(key),其中 key 表示元素的键值,hash(key) 的值表示经过散列函数计算得到的散列值。

那第一个例子中,编号就是数组下标,所以 hash(key) 就等于 key。改造后的例子,写成散列函数稍微有点复杂。我用伪代码将它写成函数就是下这样的:

int hash(String key) {
	// 获取字符串后两位数组
	String lastTwoChars = key.substr(length-2, length);
	// 将后两位字符转为证书
	int hashValue = convert lastTwoChars to int;
	return hashValue;
}

刚刚的例子,散列函数比较简单,也比较容易想到。但是,如果参数选手的编号是随机生成的 6 位数字,又或者用的是 a 到 z 之间的字符串,该如何构造散列函数呢?我总结了三点散列函数设计的基本要求:

  • 散列函数计算得到的散列值是一个非负整数;
  • 如果 key1 等于 key2,那 hash(key1) 等于 hash(key2)
  • 如果 key1 不等于 key2,那 hash(key1) 不等于 hash(key2)

第一点理解起来应该没有任何问题。因为数组下标是从 0 开始的,所以散列函数生成的散列值也要是非负整数。第二点也好理解。想同的 key,经过散列函数得到的散列值也是相同的。

第三点理解起来可能会有问题。这个要求看起来合情合理,但是在真实的情况下,要想找到一个不同的 key 对应地散列值都不一样的函数,几乎是不可能的。即便像业界著名的 MD5、SHA、CRC 等哈希算法,也无法完全避免这种散列冲突。而且,以内数组的存储空间有限,也会加大散列冲突的概率。

所以,我们几乎无法找到一个完美的无冲突的散列函数,即便能找到,付出的时间成本、计算成本也是很大的,所以针对散列函数,我们需要通过其他途径来解决。

散列冲突

再好的散列函数也无法避免冲突。那究竟该如何解决散列冲突问题呢?常用的散列冲突解决办法有两类:开放寻执法(open addressing)和链表法(chaining)。

1.开放寻址法

开放寻址法的核心思想是,如果出现了散列冲突,我们就重新探测一个空闲位置,将其插入。那如何重新探测新的位置呢?先讲一个比较简单的探测方法,线性探测(Linear Probing)。

当我们往散列表中插入数据时,如果某个数据经过散列函数散列之后,存储位置已经被占用,我们就从当前位置开始,依次往后寸照,看看是否有空闲位置,直到找到为止。

下图演示了线性探测法。里面的黄色色块表示空闲位置,橙色的色块表示已经存储了数据。
在这里插入图片描述
从图中可以看出,散列表大小为 10,在元素 x 插入散列表之前,已经 6 个元素插入到散列表中。x 经过 Hash 算法之后,被散列到下标为 7 的位置,但是这个位置已经没有数据了,所以就产生了冲突。于是我们就顺序地往后一个一个找,看有没有空闲的位置,遍历到尾部都没有找到空间的位置,于是我们再重头再开始找,直到找到空闲的位置 2,于是就将其插入到这个位置。

在散列表中查找元素的过程有点类似插入过程。我们通过散列函数求出要查找元素的键值对应的散列值,然后比较数组中下标为散列值的元素和要查找的元素。如果相等,则说明就是我们要找的元素;否则就顺序往后依次查找。如果遍历到数组中的空闲位置还没有找到到,就说明要查找的元素并不在散列表中。
在这里插入图片描述
散列表跟数组一样,不仅支持插入、查找操作,还支持删除操作。对于使用线性探测法解决冲突的散列表,删除操作稍微有点特别。我们不能单纯地把要删除的元素设置为空。这是为什么呢?

还记得刚刚讲的查找操作码?在查找的时候,一旦我们通过线性探测法,找到一个空闲的位置,我们就可以认定散列表中不存在这个数据。但是,如果这个空闲位置是我们后来删除的,就会导致原来的查找算法失效。本来存在的数据,会被认定为不存在。这个问题该如何解决呢?

我们可以将删除的元素,特殊标记为 deleted。当线性探测查找时,遇到标记为 deleted 的空间,并不是停下来,而是继续往下探测。

在这里插入图片描述
可能你已经发现了,线性探测法其实存在很大的问题。当散列表中插入的数据越来越多时,散列冲突发生的可能性就会越来越大,空闲位置会越来越少,线性探测的时间就会越来越久。极端情况下,我们可能需要探测整个散列表,才能找到要查找或者要删除的数据。

对于开放寻址冲突解决办法,除了线性探测法之外,还有另外两种比较经典的探测方法,二次探测(Quadratic probing)和双重散列(Double hashing)。

所谓二次探测,跟线性探测很像,线性探测每次探测的步长是 1,那它探测的下标序列就是 h a s ( k e y ) + 0 , h a s ( k e y ) + 1 , h a s ( k e y ) + 2 , . . . has(key) + 0,has(key) + 1,has(key) + 2,... has(key)+0has(key)+1has(key)+2...。而二次探测的步长就变成了原来的 “二次方”,也就是说,它探测的下标序列是 h a s ( k e y ) + 0 , h a s ( k e y ) + 1 2 , h a s ( k e y ) + 2 2 , . . . has(key) + 0,has(key) + 1^2,has(key) + 2^2,... has(key)+0has(key)+12has(key)+22...

所谓双重散列,意思就是不仅要使用一个散列函数。我们使用一组散列函数 hash1(key),hash2(key),hash3(key),...。我们先用第一个散列函数,如果计算得到的存储位置已经被占用,再用第二个散列函数,依次类推,直到找到空闲的存储位置。

不管采用哪种探测方法,当散列表中空闲位置不多的时候,散列冲突的概率就会大大提高。为了尽可能保证散列表的操作效率,一般情况下,我们会尽可能保证散列表中有一定比例的空闲槽位。我们用 装载因子(load factor)来表示空位的多少。

装载因子的计算公式:

散列表的装载因子 = 填入表中的元素个数 / 散列表的长度

装载因子越大,说明空闲位置就越少,冲突越多,散列表的性能会下降。

2.链表法

链表法是一种更加常用的散列冲突解决办法,相比开放寻址法,它要简单的多。看下图,在散列表中,每个 “桶(bucket)” 或者 “槽(slot)” 会对应一条链表,所有散列值相同的元素我们都放到相同槽位对应的链表中。
在这里插入图片描述
插入的时候,我们只需要通过散列函数计算出对应地散列槽位,将其插入到对应链表中即可,所以插入的时间复杂度是 O ( 1 ) O(1) O(1)。当查找、删除一个元素时,我们通过通过散列函数计算出对应地槽,然后遍历链表查找或删除。那查找或删除的时间复杂度是多少呢?

实际上,这两个操作的时间复杂度跟链表长度 k 成正比,也就是 O ( k ) O(k) O(k)。对于散列函数来说,理论上讲, k = n/m ,其中 n 表示散列中数据的个数,m 表示散列表中 “槽” 的个数。

Word文档中的单词拼写检查功能是如何试下的?

常用的英文单词有 20 万个左右,假设单词的平均长度是 10 个字母,平均一个单词占用 10 个字节的内存空间, 20 万英文单词大约占 2MB 的存储空间,就算放大 10 倍也就 200MB。对于现在的计算机来说,这个大小完全可以放在内存里面。所以,我们可以用散列表来存储整个英文单词词典。

当用户输入某个英文单词时,我们拿用户输入的单词去散列表中查找。如果查到则说明拼写正确;如果没有查找,则说明拼写错误,给予提示。借助散列表这种数据结构,我们就可以轻松实现快速判断是否存在拼写错误。

小结

本章讲解了一些比较基础、比较偏理论的散列表知识,包括散列表的由来、散列函数、散列冲突的解决方法。

散列表来源于数组,它借助散列函数对数组这种数据结构进行扩展,利用的是数组支持按照下标随机访问元素的特性。散列表两个核心问题是散列函数设计散列冲突解决。散列冲突有两种常用的解决方法,开放寻址法和链表法。散列函数设计的好坏决定了散列冲突的概率,也就决定散列表的性能。

针对散列函数和散列冲突,本章只讲解了一些基础的概念、方法,下篇文章会更贴近实战、更加深入地探讨这两个问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值