概述
上篇文章,讲解了哈希算法的四个应用,它们分别是:安全加密、数据校验、唯一标识、散列函数。本章,再来看剩余的三种应用:负载均衡、数据分片、分布式存储。
应用五:负载均衡
我们知道负载均衡算法有很多,比如沦陷、随机、加权轮询等。那如何才能实现一个回话沾滞(session sticky)的负载均衡算法呢?也就是说我们需要在同一个客户端上,在一次会话中的所有请求都路由到同一个服务器上。
最直接的反复啊就是,维护一张映射关系,这张表的内容是客户端 IP 地址或者会话 ID 与服务器编号的映射关系。客户端发出的每次请求,都要先在映射表中查找应该路有的服务器编号,然后再请求编号对应地服务器。这种方法简单直观,但也有几个弊端:
- 如果客户端很多,映射表可能会非常大,比较浪费内存空间
- 客户端下线、上线,服务器扩容、缩容都会导致映射失效,这样维护映射表的成本就会很大;
如果借助哈希算法,这些问题都可以非常完美的解决。我们可以通过哈希算法,对客户端 IP 地址或者会话 ID 计算哈希值,将取得的哈希值与服务器列表的大小进行取模运算,最终得到的值就是应该被路由到的服务器编号。这样,我们就可以把同一个 IP 过来的所有请求,都路由到同一个后端服务器上。
应用六:数据分片
哈希算法还可以用于数据的分片。这里有两个例子。
1. 如何统计 “搜索关键词” 出现的次数
假设我们有 1T 的日志文件,这里记录了用户的搜索关键词,我们想要快速统计出每个关键词被搜索的次数,该怎么做呢?
这个问题有两个难点,第一个是搜索日志很大,没办法放到一台机器的内存中。第二个难点是,如果只用一台机器来处理这么具体的数据,处理时间会很长。
针对这两个难点:我们可以先对数据进行分片,然后采用多台机器处理的方法,来提高处理速度。具体的思路是这样的:为了提高处理的速度,我们用 n 台机器并行处理。我们从搜索记录的日志文件中,依次读取每个搜索关键词,并且通过哈希函数计算哈希值,然后再跟 n 取模,最终得到的值,就是应该被分配到的机器编号。
这样,哈希值相同的搜索关键词就会被分配到同一个机器上。也就是说,同一个搜索关键词会被分配到同一个机器上。每个机器会分别计算关键词出现的次数,最后合并起来就是最终的结果。
实际上,这里的处理过程也是MapReduce 的基本设计思想。
2.如何快速判断图片是否在图库中
如何快速判断图片是否在图库中?上篇文章已经讲过这个例子。当时我介绍了一种方法,就是为每个图片取唯一标识(或者信息摘要),然后构建散列表。
假设现在我们的图库有 1 亿张图片,很显然,在单台机器上构建散列表是行不通的。因为单台计算机的内存有限,而一亿张图片构建散列表显然远远超出了单台机器的内存上线。
同样可以对数据进行分片,然后采用多机处理。我们准备 n 台机器,让每台机器只维护某一部分图片对应地散列表。我们每次从图库中读取一个图片,计算唯一标识,然后与机器个数 n 求余取模,得到的值就对应要分配的机器编号,然后将这个图片的唯一标识和图片路径发往对应地机构构建散列表。
当我们要判断一个图片是否在图库中的时候,我们通过同样的哈希算法,计算这个图片的唯一标识,然后与机器个数 n 求余取模。假设得到的值是 k,那就去编号为 k 的机器构建的散列表中查找。
现在,我们来估算一下,给这一亿张图片构建散列表大约需要多少台湖区,
散列表中每个数据单元包含两个信息,哈希值和图片文件的路径。假设我们通过 MD5 来计算哈希值,那长度就是 128 比特,也就是 16 字节。文件路径长度的上限是 256 字节,我们可以假设平均长度是 128 字节。如果我们用链表法来解决冲突,那还需要存储指针,指针只占 8 字节。所以,散列表中的每个数据单元就占用 512 字节(这里知识估算,并不准确)。
假设一台机器内存大小为 2GB,散列表的转载因子为 0.75,那一台机器可以给大约 1000 万(2GB*0.75/152)张图片构建散列表。所以,如果要对 1 一张图片构建索引,需要大约十几台机器。在工程中,这种估算是很重要的,能让我们实现对需要投入的资源、资金有个大概的了解,能更好的评估解决方案的可行性。
实际上,针对这种海量数据的处理问题,我们都可以采用多机分布式处理。借助这种分片的思路,可以突破单机内存、CPU 等资源的限制。
应用七:分布式存储
现在互联网面对的都是海量的数据、海量的用户。我们为了提高数据的读取、写入能力,一般都采用分布式的方式来存储数据,比如分布式缓存。我们有海量的数据需要缓存,所以一个缓存机器肯定是不够的。于是,我们就需要将数据分布在多台机器上。
该如何决定将哪个数据放到哪个机器上呢?我们可以借助前面数据分片的思路,即通过哈希算法对数据提取哈希值,然后多机器个数取模,这个最终值就是应该存储的缓存机器编号。
但是,如果数据增多,原来的 10 台机器已经无法承受了,我们就需要扩容,比如扩到 11 个机器,这时候麻烦就来了。因为,这里并不是简单地加个机器就可以了。
原来的数据时通过 10 来取模的。比如 13 这个数据,存储在编号为 3 这台机器上,但是新加了一台机器后,我们对数据按照 11 取模,原来 13 这个数据就被分配 2 这台机器上了。
因此所有的数据都要重新计算哈希值,然后重新搬移到正确的机器上。这就相当于,缓存中的数据一下子就失效了。所有的数据请求都会穿透缓存,直接去请求数据库。这样就可能发生雪崩效应,压垮数据库。
所以,我们需要一种方法,使得在新加入一个机器后,并不需要做大量的数据搬移。这时候,一致性哈希算法就要登场了。
假设我们有 k 个机器,数据的哈希值的范围是 [0, MAX]。我们将整个范围划分成 m 个小区间(m 远大于 k),每个机器复杂 m/k 个小区间。当有新机器加入时,我们就将某几个小区间的数据,从原来的机器中搬移到新的机器中。这样,既不用全部重新哈希、搬移数据,也保持了各个机器上数据量的均衡。
一致性哈希算法的基本思想就是这么简单。此外,它还会借助一个虚拟的环和虚拟结点,更加优美地实现出来。
除了上面讲到的分布式缓存,实际上,一致性哈希算法的应用非常广泛,在很多分布式存储系统中,都可以见到一致性哈希算法。
小结
本章讲解了三种哈希算法在分布式系统中的应用,它们分别是:负载均衡、数据分片、分布式存储。
- 在负载均衡应用中,利用哈希算法替代映射,可以实现一个会话沾滞的负载均衡策略。
- 在数据分片应用中,通过哈希算法对处理的海量数据进行分片,多机分布式处理,可以突破单机资源的限制。
- 在分布式存储应用中,利用一致性哈希算法,可以解决缓存等分布式系统的扩容、缩容导致数据大量搬移的难题。