关于HALCON的彩色图像颜色分离(1)

最近做了一个颜色提取的案子,谈一谈感想。
一般彩色相机获取彩色图像是R,G,B三个通道的,然后合成出颜色。这里就不详细介绍颜色的构成原理了,很多地方都会讲,不过看书的话,我是看《数字图像处理》,感觉里面讲的还是比较透的,可以推荐。
需要区分显色的图片
我们这边之前也有类似的案子,用VISIONPRO做的,VISIONPRO有直接的色彩抽取,分割工具,如下图,看起来是4个工具,但是好像原理都一样,用起来比较方便,但是我比较不喜欢VISIONPRO的不灵活。没有很认真的用VISIONPRO工具,但是看它的原理大致是(可能有错误),主要分为两类,一类是训练,一类是阈值提取或者比较。训练这个应该与HALCON颜色图像的训练类似,HALCON有个通过颜色检测汽车保险丝的历程;阈值提取的方法,VISION应该是采用了RGB三通道颜色的范围提取图像区域,后者HALCON倒是没有直接对应的算子,HALCON例程对这种方法好像介绍也不多,但如果稍微了解了原理,对这种方法的实现,HALCON是很容易的。
在这里插入图片描述
可以设置R,G,B提取的范围
而HALCON的彩色处理比较直接的工具,(这里主要所例程,HALCON本身对图像处理能力是非常强大的)。主要是训练和色彩空间转换提取。对于训练这里不好多讲,对训练的原理还不是很清楚,到底准确性及可靠性咋样不知道,训练可能本身对彩色图像的原理也不许学习太多。
HALCON例程
这里主要讨论一下彩色空间变化的问题,HSV(色调/饱和度/强度)的色彩模型,《数字图像处理》中介绍的也比较多,其中也说到,可以通过色调来把颜色区分出来。把R,G,B色彩图像,转化到HSV色彩空间去,然后通过色调来区分颜色。实际HALCON例程也是这样写的,HALCON例程的效果比较好,但是,对于这副图,转化出来的色调图如下,除了红色是比较明显的黑色外,其他绿色和白色几乎是混合的,几乎无法提取,但是饱和度图,绿色和最左边的线(就叫银白色吧,和白色也挺像),差距也是很小的。
这种效果,感觉其实是不好理解的,从直观的彩色图来看,绿色是很明显的结果转换到色彩空间反而不好提取。
色调图
饱和度图
虽然HSV空间对描绘色调来讲是很不错的,但是也可以回归到颜色的最直接的定义,一种颜色是有(R,G,B)的值来确定的,确切的来讲,是三者之间的比值,如果之间的比值确定下来了,颜色就稳定了。
这里强调3者的比值,是突出与HSV描述方法的不同,如果再RGB空间描述是一个向量,但是HSV空间的色调,在RGB空间描述是一个面,是这个向量与向量(1,1,1)组成的面,色调范围更大。
我们知道,白色R,G,B的比值基本为1:1:1的,而图中的绿色的比值,测量如下:虽然在图像中绿色区域也有明亮有暗区,但是图像采集几个点后,得到的比值几乎是稳定的,再看红色,几乎也是很稳定的,于是本案子中,采用这种比值来进行颜色提取。
在这里插入图片描述在这里插入图片描述
采用比值提取红色区域
在这里插入图片描述
采用比值提取绿色区域
在这里插入图片描述
可以看到是比较准确的,这种与VISIONPRO其实有点像,但是VISIONPRO好像是直接提取R,G,B值的范围,而这里是转换为比值之后再进行提取,以下是VISIONPRO提取的效果(可能没有很好的设置参数),没有上面提取的饱满。
在这里插入图片描述
对于银白色与白色的提取,从色彩上看,这两个是比较接近的,所以并不适宜通过色彩,但刚才的饱和度图也许可以提供思路,这里不再讨论。

### 回答1: Halcon彩色图像可以分为以下几种通道: 1. 红色通道(Red Channel):包含图像中所有红色的信息。 2. 绿色通道(Green Channel):包含图像中所有绿色的信息。 3. 蓝色通道(Blue Channel):包含图像中所有蓝色的信息。 4. 色相通道(Hue Channel):包含图像中所有色相信息。 5. 饱和度通道(Saturation Channel):包含图像中所有饱和度信息。 6. 亮度通道(Brightness Channel):包含图像中所有亮度信息。 7. 灰度通道(Gray Channel):包含图像的灰度信息。 通道的信息可以用来进行图像分析、处理和操作,如图像阈值分割、边缘检测等。 ### 回答2: Halcon彩色图像可以分为红色通道、绿色通道和蓝色通道。每个通道代表了图像中相应颜色的信息。在Halcon中,对于彩色图像,可以使用RGB模型表示。每个像素由红色、绿色和蓝色三个分量组成,分别对应了图像中红色、绿色和蓝色的强度。因此,可以将图像分解为这三个通道,分别表示不同表观颜色的部分。例如,如果我们只关注图像中的红色对象,我们可以提取出红色通道,并忽略绿色和蓝色通道。相反地,如果我们想突出显示绿色对象,我们可以提取出绿色通道并消除红色和蓝色通道。这种通道分离提取的方法可以用于颜色分析、特定颜色对象的识别和图像处理中的其他应用。 ### 回答3: Halcon彩色图像可以分为三种通道:红色通道、绿色通道和蓝色通道。这三个通道分别对应了彩色图像中的红色、绿色和蓝色分量。在彩色图像中,每个像素点都有红色、绿色和蓝色三个分量的数值,这些数值决定了像素点的颜色。通过分离这些通道,我们可以单独获取到图像的不同颜色分量的信息。 红色通道代表了图像中的红色分量,通常用来表示物体的红色部分或红光的强度。绿色通道代表了图像中的绿色分量,通常用来表示物体的绿色部分或绿光的强度。而蓝色通道代表了图像中的蓝色分量,通常用来表示物体的蓝色部分或蓝光的强度。 通过分离红色、绿色和蓝色通道,我们可以对图像进行各种颜色的处理,比如增强某个颜色的饱和度、调整颜色的对比度、提取特定颜色的物体等。同时,我们也可以将不同的颜色通道进行合并,以还原原始的彩色图像。 总之,Halcon彩色图像可以分为红色通道、绿色通道和蓝色通道,通过分离和合并这些通道,可以对图像进行各种颜色处理操作。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值