最长公共子串计算C++

公共字串计算(最长公共子串/序列)C++

描述

题目标题:
计算两个字符串的最大公共字串的长度,字符不区分大小写

输入

输入两个字符串

输出

输出一个整数

样例输入

asdfas werasdfaswer

样例输出

6

思路

暴力求解
此题用cin即可

代码

#include <iostream>
#include <string>
using namespace std;
int Maxsubstr(string a,string b)
{
    unsigned int start1,start2;
    int count=0,Max=0;
    for(unsigned int i=0; a[i]!='\0'; i++)
    {
        for(unsigned int j=0; b[j]!='\0'; j++)
        {
            start1=i;
            start2=j;
            while(a[start1]==b[start2] && start1<a.length() && start2<b.length())
            {
                start1++;
                start2++;
                count++;
            }
            if(count>Max)
            {
                Max=count;
            }
            count=0;
        }
    }
    return Max;
}

int main()
{
    string str1,str2;
    cin>>str1;
    cin>>str2;
    //不区分大小写
    for (unsigned int i=0; i<str1.length(); i++)
    {
        str1[i]=tolower(str1[i]);
    }
    for (unsigned int i=0; i<str2.length(); i++)
    {
        str2[i]=tolower(str2[i]);
    }
    cout<<Maxsubstr(str1,str2)<<endl;
}

这里写图片描述

题目

描述

查找两个字符串a,b中的最长公共子串。
详细描述:
查找两个字符串a,b中的最长公共子串。

输入

输入两个字符串

输出

返回重复出现的字符

样例输入

abcdefghijklmnop
abcsafjklmnopqrstuvw

样例输出

jklmnop

思路

暴力求解

代码

#include <iostream>
#include <string>
using namespace std;
int Maxsubstr(string a,string b,string *&s)
{
    unsigned int start,start1,start2;
    int count=0,Max=0;
    for(unsigned int i=0; a[i]!='\0'; i++)
    {
        for(unsigned int j=0; b[j]!='\0'; j++)
        {
            start1=i;
            start2=j;
            while(a[start1]==b[start2] && start1<a.length() && start2<b.length())
            {
                start1++;
                start2++;
                count++;
            }
            if(count>Max)
            {
                start = i;
                Max = count;
            }
            count=0;
        }
    }
    //保存字符串
    s=new string[Max+1];
    for(int i=0; i<Max; i++)
    {
        s[i]=a[i+start];
    }
    s[Max]='\0';
    return Max;
}

int main()
{
    string str1,str2,*str;    
    cin>>str1>>str2;
    //此题输入-------------
    //getline(cin,str1);
    //getline(cin,str2);
    int length = Maxsubstr(str1,str2,str);
    for(int i=0; i<length; i++)
    {
        cout<<str[i];
    }
    cout<<endl;
    return 0;
}
这里写图片描述
这里写图片描述

如果你看到这里觉得暴力方法low

Low。。。。

哎,那就聊聊动态规划版的经典问题《最长公共子串(序列)》

子串是连续的,子序列可以是不连续的。

状态转移方程:

符号约定,C1是S1的最右侧字符,C2是S2的最右侧字符,S1‘是从S1中去除C1的部分,S2’是从S2中去除C2的部分。

LCS(S1,S2)等于下列3项的最大者:

(1)LCS(S1,S2

(2)LCS(S1,S2)

(3)LCS(S1)+C1 —如果C1等于C2;

边界终止条件:如果S1和S2都是空串,则结果也是空串。

下面我们同样要构建一个矩阵来存储动态规划过程中子问题的解。这个矩阵中的每个数字代表了该行和该列之前的LCS的长度。与上面刚刚分析出的状态转移议程相对应,矩阵中每个格子里的数字应该这么填,它等于以下3项的最大值:

(1)上面一个格子里的数字

(2)左边一个格子里的数字

(3)左上角那个格子里的数字(如果 C1不等于C2); 左上角那个格子里的数字+1( 如果C1等于C2)

#include<iostream>
#include<cstring>
#include <vector>

using namespace std;

void SubSequence(vector<vector<string>> &flag,string str1, string str2,int i,int j);
void display(int *result,string str1,string str2);

void initialVector(vector<vector<string>> &vectorAll,int len)
{
    for(int i=0; i<len; ++i)
    {
        vector<string> temp;
        vectorAll.push_back(temp);
    }
}

int lcs_string(string str1, string str2)
{
    int len1 = str1.length();
    int len2 = str2.length();
    int result = 0;     //记录最长公共子串长度
    int c[len1+1][len2+1] ;
    int endPos = -1;
    for (int i = 0; i <= len1; i++)
    {
        for( int j = 0; j <= len2; j++)
        {
            if(i == 0 || j == 0)
            {
                c[i][j] = 0;
            }
            else if (str1.at(i-1) == str2.at(j-1))
            {
                c[i][j] = c[i-1][j-1] + 1;
                result = max(c[i][j], result);
                if(result==c[i][j])  endPos = i;//记录最后一个点的位置
            }
            else
            {
                c[i][j] = 0;//重新计数
            }
        }
    }
    //print result
    string str="";
    if(endPos<=len1)
    {
        str = str1.substr(endPos-result,result);
    }
    else
    {
        str = str2.substr(endPos-result,result);
    }
    cout<<"\n\nLongest Common Substring : "<<str<<endl;
    return result;
}
//对于最长公共子序列,只是在最后一个else里面放的是前两步的最大值
int lcs_squence(string str1, string str2)
{
    int len1 = str1.length();
    int len2 = str2.length();
    int c[len1+1][len2+1];
    vector<vector<string>> flag;
    initialVector(flag,len1+1);
    for (int i = 0; i <= len1; i++)
    {
        for( int j = 0; j <= len2; j++)
        {
            if(i == 0 || j == 0)
            {
                c[i][j] = 0;
                flag[i].push_back("NULL");
            }
            else if (str1.at(i-1) == str2.at(j-1))
            {
                c[i][j] = c[i-1][j-1] + 1;
                flag[i].push_back("left_up");

            }
            else if(c[i - 1][j]>=c[i][j - 1])
            {
                c[i][j]=c[i - 1][j];
                flag[i].push_back("left");
            }
            else
            {
                c[i][j] = c[i][j - 1];
                flag[i].push_back("up") ;
            }
        }

    }
    //display(&c[0][0],str1,str2);  //输出数组
    SubSequence(flag,str1,str2,str1.length(),str2.length());
    //cout<<c[len1][len2]<<endl;
    return c[len1][len2];
}

void display(int *result,string str1,string str2)
{
    int len1 = str1.length();
    int len2 = str2.length();
    //输出表头
    for(int i=0; i<=len2; ++i)
    {
        cout<<"\t"<<str2[i];
    }
    cout<<endl;
    //输出数组
    for(int i=0; i<=len1; ++i)
    {
        cout<<str1[i]<<"\t";
        for(int j=0; j<=len2; ++j)
        {
            cout<<*result<<"\t";
            result++;
        }
        cout<<endl;
    }

}
//按照方向查找
void SubSequence(vector<vector<string>> &flag,string str1, string str2,int i,int j)
{
    if (i == 0 || j == 0)
        return;

    if (flag.at(i).at(j) == "left_up")
    {
        cout<<str2[j - 1]<<" ("<< i - 1<<" , "<< j - 1<<")"<<endl;
        //左前方
        SubSequence(flag,str1,str2,i - 1, j - 1);
    }
    else
    {
        if (flag.at(i).at(j) == "up")
        {
            SubSequence(flag,str1,str2,i, j - 1);
        }
        else
        {
            SubSequence(flag,str1,str2,i - 1, j);
        }
    }
}

int main()
{
    string X = "";
    string Y = "";
    //输入
    getline(cin,X);
    getline(cin,Y);
    cout<<"\nFirst string:\n"<<X<<endl;
    cout<<"\nSecond string:\n"<<Y<<endl;
    cout << "Length of Longest Common Substring is " << lcs_string(X, Y)<<endl;
    cout << "Length of Longest Common Subsequence is " << lcs_squence(X, Y)<<endl;
    return 0;
}

这里写图片描述

参考引用

传送门 : 最长公共子序列

传送门 : 最长公共子序列(LCS)C++实现

传送门 : 最长公共子序列与最长公共子串

传送门 : 最长公共子序列。。

传送门 : 最长公共子序列。。大杂烩

以下一个使用动态规划算法求最长公共子串(Longest Common Substring)的C++代码示例: ```cpp #include <iostream> #include <string> #include <vector> using namespace std; string LongestCommonSubstring(string s1, string s2) { int m = s1.length(); int n = s2.length(); // 创建二维动态规划数组 vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0)); int maxLength = 0; // 最长公共子串的长度 int endIndex = 0; // 最长公共子串在s1中的结束索引 // 动态规划计算公共子串长度 for (int i = 1; i <= m; i++) { for (int j = 1; j <= n; j++) { if (s1[i - 1] == s2[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + 1; if (dp[i][j] > maxLength) { maxLength = dp[i][j]; endIndex = i - 1; } } } } // 提取最长公共子串 string longestSubstring = s1.substr(endIndex - maxLength + 1, maxLength); return longestSubstring; } int main() { string s1, s2; cout << "请输入字符串s1:"; cin >> s1; cout << "请输入字符串s2:"; cin >> s2; string longestSubstring = LongestCommonSubstring(s1, s2); cout << "最长公共子串为:" << longestSubstring << endl; return 0; } ``` 在示例代码中,我们使用动态规划的思想来解决最长公共子串的问题。我们创建一个二维动态规划数组`dp`,其中`dp[i][j]`表示以`s1[i-1]`和`s2[j-1]`为结尾的最长公共子串的长度。然后,我们遍历字符串`s1`和`s2`的所有字符,如果当前字符相等,则将`dp[i][j]`更新为`dp[i-1][j-1] + 1`,同时记录最长公共子串的长度和在`s1`中的结束索引。最后,我们通过提取最长公共子串的方式得到最终的结果。 请注意,以上代码仅考虑了求解最长公共子串的长度和提取最长公共子串,如果需要其他操作(如输出所有最长公共子串),可能需要进行适当的修改。 希望对你有帮助!如果你有任何问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值