- 博客(14)
- 资源 (1)
- 收藏
- 关注
原创 【链表及其经典问题】
假设head节点距离环的起点为a,当慢指针走到环的起点时,快指针距离环的起点也为a,假设此时快指针正向距离环的起点为x,那么当快指针向前走2x步,慢指针走x步时,他们两个相遇。顺序遍历链表,将其中的节点依次存入哈希表中,如果要存入的节点已经存在于哈希表中,则说明有环,遍历结束。因为环的总长度为a+x,因此此时他们距离环的起点距离为a,与起始点到环起点的距离相同。如果链表有环,那么快慢指针一定会相遇,指向同一个节点,当向同一个节点时,遍历结束。链表中的每个节点,通过指针域的值,形成一个线性结构。...
          2022-07-20 10:01:19
           399
399
        
原创 【故事证明和概率公理】
首先因为2月29日出现的概率相对要低一些,因此我们排除2月29日,假设一年有365天,并且我们假设生日是每一天的概率是相同的。显然结果是出乎我们的“直觉的”
          2022-07-19 20:58:28
           395
395
        
原创 【模型评估】
二值分类器是最常见也是应用最广泛的分类器。它的评价指标有很多,前面有介绍,但这些指标或多或少只能反应模型在某一方面的性能。相比而言,ROC曲线则有很多优点,是二分类器最重要的指标之一。ROC曲线是ReceiverOperatingCharacteristicCurve的简称,直译为“受试者工作特征曲线”。ROC曲线的横坐标为假阳性率(FPR);FPR=FPN,TPR=TPPFPR=NFP,TPR=PTP其中PPP是真实正样本的数量di。...
          2022-07-19 17:05:03
           748
748
        
原创 【概率和计数】
如果我们熟悉了乘法规则,上述表格中的三种情况我们都可以轻松的填上,但对于。例如假设我们投掷2枚硬币,那么其可能的结果有{HH,HT,TH,TT}假设我们从52张扑克牌中任取5张,选出来的牌打出三代二的可能性是多少?再来看分子,我们具体看其中的一种可能(三张7,两张10)还是比较费力,我们来看一下这种情况应该如何去分析。同时这个定义有两个前提假设。(这是高中二项分布的知识)首先我们看分母的概率是。...
          2022-07-19 11:39:01
           337
337
        
原创 【求解AX=b】
此时每行都有主元,因此方程的个数小于等于未知数的个数,有解的条件,下面再来看一下应该如何进行求解。下面我们进行消元,由于这里。那么我们应该如何求得所有的解呢?因此我们经过回代就可以得到。不一定等于0,因此我们看。我们还是以上一节的矩阵。上面已经证明了。......
          2022-07-19 10:31:14
           535
535
        
原创 【求解AX=0】
由于消元所用到的初等变换均不会使方程的右侧(0)发生改变,因此我们只需要考虑方程的左侧即可。如果我们将主列放在前面,自由列放在后面,我们就可以得到一个由主列构成的单位矩阵。对应的这个矩阵有两个主列,即列1和列3,其他两列我们称为自由列(那么我们有没有办法一次性求出所有特解呢,我们假设特解矩阵为。前面有提到自由列对应的未知数可以任意取值,我们不妨取。也是该方程的解,我们称他为方程组的一组特解。同样我们可以通过取不同的自由值得到不同的解。可以看到这个矩阵的主元只有两个,因此。,我们可以按照一定的原则继续化简。.
          2022-07-18 15:05:15
           1544
1544
        
原创 【向量空间】
先来看一下向量有哪些基本运算?a、ba+ba−b3a所谓向量空间,我们以二维实向量空间为例,我们将其记作R2[28]下面举一个反例,例如我们取R2的第一象限−1虽然Rn是一个向量空间,但我们往往更关注其子空间,那么我们能否在R2中寻找一个子空间呢?如图所示,下面我们再来看如何通过矩阵构造向量空间A=⎣⎡132341⎦⎤R3⎣⎡124⎦⎤和⎣⎡331⎦⎤C(A)P∈R。...
          2022-07-18 10:24:06
           962
962
        
原创 【特征工程】
俗话说,巧妇难为无米之炊。在机器学习中,,而。对于一个机器学习的问题,数据和特征往往决定了结果的上限,而模型、算法的选择则是在逐步接近这个上限。特征工程,顾名思义,就是对原始数据进行一系列工程处理,将其提炼为特征,作为输入供算法和模型使用。从本质上来讲,特征工程是一个表示和展现数据的过程。...
          2022-07-16 23:17:20
           524
524
        
原创 【转置与置换】
我们以3×33\times33×3的单位矩阵III来举例:I=[100010001]I=\left[ {\begin{array}{cc}1\quad 0\quad0\\ 0\quad 1\quad0\\ 0\quad0\quad1 \end{array} } \right]I=⎣⎡100010001⎦⎤其满足置换一次即能得到原矩阵的变形有:[010100001][001010100][100001010]\left[ {\begin{array}{cc}0\quad 1\quad0\\
          2022-07-09 16:17:40
           359
359
        
原创 【矩阵的LU分解】
首先我们假设AAA可逆,BBB也可逆,那么我们应该如何求得ABABAB的逆,我们先给出结论:(AB)−1=B−1A−1(AB)^{-1}=B^{-1}A^{-1}(AB)−1=B−1A−1下面再看转置的矩阵(虽然还没讲,但是大部分人应该知道那是什么)AA−=IAA^{-}=IAA−=I我们对这个公式的两侧同时进行转置可得:(A−1)TAT=I(A^{-1})^TA^T=I(A−1)TAT=I因此我们可以得到(AT)−1=(A−1)T(A^T)^{-1}=(A^{-1})^T(AT)−1=(A−1)T也就是
          2022-07-09 00:28:24
           391
391
        
原创 【乘法和逆矩阵】
首先我们来看常规的矩阵乘法现在我们再来看整列的情况同理如果我们看整行的情况我们再进一步发散思维,前面常规该方法有提到矩阵CCC中的某个元素是由矩阵AAA的行乘矩阵BBB的列所得到的,那么矩阵AAA的列乘矩阵BBB的行我们又能得到什么呢?最后我们再来看一下矩阵的分块乘法 首先我们假设有矩阵AAA,那么讨论有没有逆的大前提就是矩阵AAA是个方阵,然后再进行下一步的讨论下面我们来看奇异矩阵,举例说明:...
          2022-07-07 09:58:41
           408
408
        
原创 【02矩阵消元】
首先给出我们要求解的方程组:{x+2y+z=23x+8y+z=124y+z=2\left\{\begin{array}{rcl}x+2y+z&=2 \\3x+8y+z&=12 \\4y+z&=2 \end{array} \right. ⎩⎨⎧x+2y+z3x+8y+z4y+z=2=12=2那么我们可以得到其系数矩阵AAA:A=[121381041]A=\left[ {\begin{array}{cc}1\quad2\quad1\\3\quad8\
          2022-07-01 01:11:47
           172
172
        
头歌计组实验存储器和运算器设计实验文件(可直接提交)
2022-06-13
         
      
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
 RSS订阅
RSS订阅