【求解AX=b】

可解性

我们还是以上一节的矩阵 A A A为例:

A = [ 1 2 2 2 2 4 6 8 3 6 8 10 ] [ x 1 x 2 x 3 x 4 ] = [ b 1 b 2 b 3 ] A=\left[ {\begin{array}{cc} 1\quad2\quad2\quad2\\ 2\quad4\quad6\quad8\\ 3\quad6\quad8\quad10\\ \end{array} } \right]\left[ {\begin{array}{cc}x_1\\x_2\\x_3\\x_4 \end{array} } \right]= \left[ {\begin{array}{cc} b_1\\b_2\\b_3\end{array} } \right] A= 1222246836810 x1x2x3x4 = b1b2b3

  • 这个矩阵第三行是由第一行和第二行相加而得到的
  • 如果这个方程组有解,必须满足: b 3 = b 1 + b 2 b_3=b_1+b_2 b3=b1+b2即左侧各行的线性组合得到0,那么右侧常数的相同组合必然为0
  • 同样按照上节课的知识, b b b必须位于 A A A的列空间内,即 b b b必须是 A A A各列线性组合得到的

​ 下面我们进行消元,由于这里 b b b不一定等于0,因此我们看 A A A的增广矩阵:

[ 1 2 2 2 ∣ b 1 2 4 6 8 ∣ b 2 3 6 8 10 ∣ b 3 ] \left[ {\begin{array}{cc} 1\quad2\quad2\quad2\quad| b_1\\ 2\quad4\quad6\quad8\quad |b_2\\ 3\quad6\quad8\quad10\quad |b_3\\ \end{array} } \right] 1222b12468b236810b3

经过初等变换消元我们可以得到:

[ 1 2 2 2 ∣ b 1 0 0 2 4 ∣ b 2 − 2 b 1 0 0 0 0 ∣ b 3 − b 2 − b 1 ] \left[ {\begin{array}{cc} 1\quad2\quad2\quad2|&b_1\\ 0\quad0\quad2\quad4 |&b_2-2b_1\\ 0\quad0\quad0\quad0|&b_3-b_2-b_1\\ \end{array} } \right] 1222∣0024∣0000∣b1b22b1b3b2b1

因此我们经过回代就可以得到 b 3 − b 2 − b 1 = 0 b_3-b_2-b_1=0 b3b2b1=0

解的结构

​ 上面已经证明了 A X = b AX=b AX=b有解的条件,下面再来看一下应该如何进行求解

下面讲求一种特解的简单方式:令所有自由变量都等于0,再求解主变量

  • 对于这个题,即令 x 2 = x 4 = 0 x_2=x_4=0 x2=x4=0,进而我们可以得到线性方程组如下:

​ $$x_1+&2x_3 =b_1\&2x_3 =b_2\$$

  • 进而求得:

    KaTeX parse error: Expected 'EOF', got '&' at position 5: x_1=&̲b_1-b_2\\x_3=&\…

那么我们应该如何求得所有的解呢?

  • 答案是对于任意一个特解 x p x_p xp,我们令其与 A A A的令空间内的任意向量 x n x_n xn相加,得到的结果的集合就是所有的解

  • 证明: A x p = b Ax_p=b Axp=b A x n = 0 Ax_n=0 Axn=0,因此 A ( x p + x n ) = b A(x_p+x_n)=b A(xp+xn)=b

  • 换句话说,-对于方程组某解,其与令空间内任意向量之和仍为解

下面我们再来看更加泛化的情况:

  • A A A是一个 m × n m\times n m×n并且秩为 r r r的矩阵(隐含条件 r ≤ m , r\le m, rm r ≤ n r\le n rn

第一种情况,列满秩,即 r = n (默认 n ≤ m ) r=n(默认n \le m) r=n(默认nm

  • 此时每列都有主元,因此所有变量都是主变量,没有自由变量,所以此时零空间只有零向量
  • 我们再来看 A X = b AX=b AX=b的特解,如果此时有解的话,那么只能有一个特解 x = x p x=x_p x=xp即此时只能有一个或零个解

第二种情况,行满秩,即 r = m ( 默认 m ≤ n ) r=m (默认m\le n) r=m(默认mn)

  • 此时每行都有主元,因此方程的个数小于等于未知数的个数,此时一定有解

  • 此时一共有 n − m n-m nm个自由变量

第三种情况, r = m = n r=m=n r=m=n

  • 对于这种可逆方阵来说其最终一定可以化简成单位矩阵 I I I
  • 其零空间同样只包含零向量
  • 这种情况下有唯一解
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菜鸟炼丹师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值