01 背包理论问题(一维数组实现)
题目
解题思路
通过**二维矩阵求解01背包问题,可以发现每一个单元格的值都是由其左上方和正上方**推导出来,并且每一个维度都可以覆盖上一个维度的值。
因此使用一维数组也能很好满足求解需求,并且空间复杂度仅为O(n)
1. 确定dp数组的定义和下标意义
- 在一维数组中,dp[j]表示背包容量为j的时候,包内物品价值总和最大。
2. 一维数组的递推公式
- 不放物品i:此时dp[j]为上一个物品存放时最大价值,相当于二维数组中的dp[i-1] [j]。
- 放物品i: dp[j] = dp[j- weight[i]] + value[i],即放物品i时候,等价于背包容量为j-weight[i]时背包最大容量和+value[i],此时背包容量总和最大。
3. 一维数组如何初始化
假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了。这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了(题目给的价值都是正整数)。
4. 一维dp数组遍历顺序
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
遍历背包与二维数组方式不一样,一维数组采用倒序方式,主要是为了保证物品i只被放进去一次。
正序遍历
dp[1] = dp[1 - weight[0]] + value[0] = 15
dp[2] = dp[2 - weight[0]] + value[0] = 30
按照上述推导公式,遍历物品i时,发现物品i被放进去俩次,dp[2]等于30
倒序遍历先算dp[2]
dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)
dp[1] = dp[1 - weight[0]] + value[0] = 15
所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。二维数组遍历背包不采用倒序遍历,是因为dp[i] [j]是由其上方推导出来的,并不会覆盖本层dp[i] [j]的值。
5. 举例推导dp数组
具体代码
public static void main(String[] args) {
int[] weight = {1, 3, 4};
int[] value = {15, 20, 30};
int bagWight = 4;
testWeightBagProblem(weight, value, bagWight);
}
public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight){
int wLen = weight.length;
//定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值
int[] dp = new int[bagWeight + 1];
//遍历顺序:先遍历物品,再遍历背包容量
for (int i = 0; i < wLen; i++){
for (int j = bagWeight; j >= weight[i]; j--){
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
//打印dp数组
for (int j = 0; j <= bagWeight; j++){
System.out.print(dp[j] + " ");
}
}