数据结构与算法(C语言版)__堆

完全二叉树叫做堆
完全二叉树就是在最后一个节点之前不允许有不满的节点(有空洞)

用数组来做完全二叉树(堆)

这里写图片描述

大顶堆,根上的数字最大(大的在上面)
小顶堆,根上的数字最小(小的在上面)
操作:
插入新节点—>向上渗透
删除根节点—>向下渗透

插入新节点,先按顺序插入到节点上,然后和父辈交换
删除根节点,先把根节点删除,然后把最后一个节点加到根上,然后和子代交换

堆用来做优先队列,用来排序(堆排序)

今天用堆做一个小例子

在头文件中加入MaxHeap.h在源文件中加入main.cpp
下面是堆的主要程序代码

//MaxHeap.h
#ifndef _MAX_HEAP_
#define _MAX_HEAP_

template<class T>
class MaxHeap{
public:
    MaxHeap(int mx = 10);
    virtual ~MaxHeap();
    bool IsEmpty();
    void Push(const T&);
    void Pop();
    const T& Top() const;
private:
    T* heapArray;
    int maxSize;
    int currentSize;

    void trickleUp(int index);
    void trickleDown(int index);
};


template<class T>
MaxHeap<T>::MaxHeap(int mx = 10){
    if (mx < 1) throw "max size must be >= 1";
    maxSize = mx;
    currentSize = 0;
    heapArray = new T[maxSize];
}

template<class T>
MaxHeap<T>::~MaxHeap(){
    delete[]heapArray;
}

template<class T>
bool MaxHeap<T>::IsEmpty(){
    return currentSize == 0;
}
template <class T>
void MaxHeap<T>::Push(const T&e){
    if (currentSize == maxSize) throw "MaxHeap id full.";
    heapArray[currentSize] = e;
    trickleUp(currentSize);
    currentSize++;
}

template<class T>
void MaxHeap<T>::trickleUp(int index){
    int parent = (index - 1) / 2;
    T bottom = heapArray[index];
    while (index>0 && heapArray[parent] < bottom){
        heapArray[index] = heapArray[parent];
        index = parent;
        parent = (parent - 1) / 2;
    }
    heapArray[index] = bottom;
}

template<class T>
const T& MaxHeap<T>::Top()const{
    return heapArray[0];
}

template<class T>
void MaxHeap<T>::Pop(){
    heapArray[0] = heapArray[--currentSize];
    trickleDown(0);
}

template<class T>
void MaxHeap<T>::trickleDown(int index){
    int largerChild;
    T top = heapArray[index];
    while (index < currentSize / 2){
        int leftChild = 2 * index + 1;
        int rightChild = leftChild + 1;
        if (rightChild < currentSize && heapArray[leftChild] < heapArray[rightChild])
            largerChild = rightChild;
        else
            largerChild = leftChild;

        if (top >= heapArray[largerChild])
            break;
        heapArray[index] = heapArray[largerChild];
        index = largerChild;
    }
    heapArray[index] = top;

}
#endif

下面是测试堆的代码(主函数)

//main.cpp
#include<iostream>
#include"MaxHeap.h"

using namespace std;

int main(){
    MaxHeap<int> h(100);
    cout << h.IsEmpty() << endl;
    cout << "测试堆" << endl;

    h.Push(20);
    h.Push(30);
    h.Push(15);
    cout << h.Top() << endl;
    h.Push(90);
    h.Push(80);
    h.Push(70);
    cout << h.Top() << endl;
    h.Pop();
    cout << h.Top() << endl;
    h.Pop();
    cout << h.Top() << endl;
    h.Pop();
    cout << h.Top() << endl;
    h.Pop();
    cout << h.Top() << endl;
    system("pause");
    return 0;
}

总结:堆是比较常用的数据结构,可以使用数组实现堆。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值