AtCoder Beginner Contest 226 E 图论 连通块中DFS判单环 思维

43 篇文章 1 订阅
该博客探讨了一种图论问题,要求在无自环和重边的无向图中为每条边指定方向,确保每个节点的出度为1。当节点数等于边数时,存在自环;节点数少于边数,则可能出现多环,导致某些节点出度大于1。解决方法是判断图是否由单一环构成,通过深度优先搜索实现。代码示例展示了如何判断并计算可能的情况,最后对结果取模给出答案。
摘要由CSDN通过智能技术生成

题目

给你一个N个点M条无向边的图。
没有自环和重边。
确定每条边的方向,要求让每个点的出度为1。
确定边的方向有几种情况。对998244353取模。

题解思路

当连通块N点M边。
当N==M的时候
就一定有一个自环。(满足连通就需要N-1条边)
当N < M的时候就可能有多个环了。这样某点出度必然为2。
小于时有某个点就出度为0了。

所以,要让每个点出度为1那这个连通块必然就是环了。
这样图里的连通块只能是环并且只有一个单环。
这里在连通块里dfs判环也感觉有点陌生。
在这里插入图片描述

贴大佬的话
大佬的题解

AC代码
#include <bits/stdc++.h>
//#include <unordered_map>
//priority_queue
#define PII pair<int,int>
#define ll long long

using namespace std;

const  int  INF =  0x3f3f3f3f ;
const  int mod = 998244353 ; 
const  int N = 200100 ;
int n , m ;

vector <int> head[200100] ; 
int vis[N] ;
int pp = 0 ; 

void dfs(int p , int fa )
{
    vis[p] = 1 ;
    for (int i = 0 ; i < head[p].size() ; i++ )
    {
        int st = head[p][i] ; 
        if (st == fa )
            continue ; 
        if (!vis[st])
            dfs(st,p) ;
        else
        {
            pp++; 
            //cout << p << " " << st << "\n" ; 
            continue ;
        }
    }
}

int main()
{
    ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    cin >> n >> m ;
    for (int i = 1 ; i <= m ; i++ )
    {
        int t1 , t2 ;
        cin >> t1 >> t2 ;
        head[t1].push_back(t2) ;
        head[t2].push_back(t1) ; 
    }
    long long ans = 1 ; 
    for (int i = 1 ; i <= n ; i++ )
    {
        if (!vis[i])
        {
            pp = 0 ; 
            dfs(i,-1) ; 
            if ( pp == 2 )
            {
                ans = ans*2 %mod ; 
            }else
            {
                ans = 0 ; 
                break ; 
            }
        }
    }
    cout << ans << "\n" ; 
    return 0 ;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值