在机器学习领域,标签噪声一直是一个严峻的问题,特别是在弱监督学习框架下。标签噪声指的是数据标注中存在的错误或者不准确的标签信息,这会对模型的训练和泛化性能产生负面影响。为了提高模型对标签噪声的鲁棒性,研究者们一直在探索各种方法和框架。本文将着重探讨弱监督学习框架下的标签噪声鲁棒性,并介绍相关研究现状和未来发展方向。
弱监督学习是指训练数据中的标签信息相对不完整或不准确,这种情况在现实应用中非常常见。传统的监督学习通常要求每个样本都有准确的标签信息,但在实际场景中,获取高质量的标注数据成本很高,甚至有时候无法获得准确的标签。因此,弱监督学习框架应运而生,它允许模型在标签信息不完整或者存在噪声的情况下进行训练。
在弱监督学习框架下,标签噪声的存在会对模型的性能造成严重影响。传统的监督学习框架下,标签噪声通常被视为异常值或者错误,直接使用可能导致模型过拟合或者无法收敛。因此,如何提高模型对标签噪声的鲁棒性成为了研究的重点之一。
近年来,研究者们提出了许多方法来应对弱监督学习框架下的标签噪声鲁棒性问题。其中,一种常见的方法是利用无监督的自我训练技术,通过模型自身生成伪标签来弥补标签信息的不完整性或错误性,从而提高模型的鲁棒性。另外,基于集成学习的方法也被广泛应用