动态规划之子集和问题(Java 版本)

本文介绍如何使用动态规划解决一个经典的算法问题:给定正整数N,找到将其拆分为两个和相等的子集的不同方法数量。通过解析问题、设定动态规划方程,并提供Java代码实现,详细解释了解题过程。
摘要由CSDN通过智能技术生成

标题:子集和问题

给定一个正整数N(1<=N<=40),将集合{1,2,3,4,.....,N}拆分成两个集合,要求两个子集合中的元素之和相等,试问总共有多少种不同的分法。例如当N=3时,集合{1,2,3}可以分成{3}和{1,2}两个集合。

要求输入:

输入一个正整数N。

要求输出:

输出有多少种分法,如果分法不存在,输出0。

样例输入:

7

样例输出:

4

题目解析:

集合的和我们可以算出,sum=N*(N+1)/2,若存在,则每个子集合的和为N*(N+1)/4,若不存在分法,则N*(N+1)%4不为0,否则代表存在分法,接下来变成选出k个数,使得其和为N*(N+1)/4,有多少种方案。我们可以用动态规划的思路进行求解,定义函数F(i,sum)代表方案数,其中i代表集合中第i个元素,sum代表此时子集合的和,动态规划方程如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值