动态规划3-子集和问题

动态规划适用于有以下特征的问题场景:

  • 最优子结构
  • 重叠子问题

DP经典问题

子集和问题

问题描述1

给定一个正整数集合,从中找到子集和最大的值,要求子集的元素必须是不相邻元素(一旦元素被选中,则其左右的元素都不能被选),返回子集和。

e.g.
arr = {4, 1, 1, 9, 1}
返回 13

思路

设dp[i]为前i个元素所能得到的最大值,则
d p [ i ] = m a x { d p [ i − 1 ] ( 不 选 a r r [ i ] ) d p [ i − 2 ] + a r r [ i ] ( 选 a r r [ i ] ) dp[i]=max\begin{cases} dp[i-1](不选arr[i])\\ dp[i-2]+arr[i](选arr[i])\end{cases} dp[i]=max{ dp[i1](arr[i])

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
子集问题是一个经典的组合优化问题,其目标是在给定的正整数集合中,找到一个子集,使得该子集中元素的和等于给定的目标数值。下面是使用动态规划算法实现子集问题的步骤: 1. 定义状态:设 $dp(i,j)$ 表示在前 $i$ 个正整数中,是否存在一个子集,使得其元素和等于 $j$。 2. 初始化状态:$dp(0,0)=1$,即前 $0$ 个正整数中,存在一个子集,其元素和为 $0$。 3. 状态转移方程:对于第 $i$ 个正整数 $num_i$,存在两种情况: a. 不选 $num_i$,则 $dp(i,j)=dp(i-1,j)$; b. 选 $num_i$,则 $dp(i,j)=dp(i-1,j-num_i)$; 综上所述,状态转移方程为:$dp(i,j)=dp(i-1,j)\text{ or }dp(i-1,j-num_i)$。 4. 最终状态:$dp(n,sum)$,其中 $n$ 表示正整数的个数,$sum$ 表示目标数值。 5. 时间和空间复杂度:时间复杂度为 $O(n\times sum)$,空间复杂度为 $O(n\times sum)$。 下面是使用动态规划算法实现子集问题的 Python 代码实现: ```python def subset_sum(nums, target): n = len(nums) dp = [[False for j in range(target+1)] for i in range(n+1)] for i in range(n+1): dp[i][0] = True for i in range(1, n+1): for j in range(1, target+1): dp[i][j] = dp[i-1][j] or dp[i-1][j-nums[i-1]] return dp[n][target] ``` 其中,参数 `nums` 表示正整数集合,参数 `target` 表示目标数值。函数返回值为布尔类型,表示是否存在一个子集,使得其元素和等于目标数值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值