[飞桨机器学习]随机森林

[飞桨机器学习]随机森林

一 、简介

随机森林是利用多棵树对样本进行训练并预测的一种分类器。

随机选择特征数目,随机选择训练数据,对同一个预测数据取出现次数最多的预测标签为最终预测标签。

这里写图片描述

随机森林实际上是一种特殊的bagging方法,它将决策树用作bagging中的模型。首先,用bootstrap方法生成m个训练集,然后,对于每个训练集,构造一颗决策树,在节点找特征进行分裂的时候,并不是对所有特征找到能使得指标(如信息增益)最大的,而是在特征中随机抽取一部分特征,在抽到的特征中间找到最优解,应用于节点,进行分裂。随机森林的方法由于有了bagging,也就是集成的思想在,实际上相当于对于样本和特征都进行了采样(如果把训练数据看成矩阵,就像实际中常见的那样,那么就是一个行和列都进行采样的过程),所以可以避免过拟合。

prediction阶段的方法就是bagging的策略,分类投票,回归均值。

二、算法

  1. N来表示训练用例(样本)的个数,M表示特征数目。
  2. 输入特征数目m,用于确定决策树上一个节点的决策结果;其中m应远小于M
  3. N个训练用例(样本)中以有放回抽样的方式,取样N次,形成一个训练集(即bootstrap取样),并用未抽到的用例(样本)作预测,评估其误差。
  4. 对于每一个节点,随机选择m个特征,决策树上每个节点的决定都是基于这些特征确定的。根据这m个特征,计算其最佳的分裂方式。
  5. 每棵树都会完整成长而不会剪枝,这有可能在建完一棵正常树状分类器后会被采用)。

三、优点

1)对于很多种资料,它可以产生高准确度的分类器;

2)它可以处理大量的输入变数;

3)它可以在决定类别时,评估变数的重要性;

4)在建造森林时,它可以在内部对于一般化后的误差产生不偏差的估计;

5)它包含一个好方法可以估计遗失的资料,并且,如果有很大一部分的资料遗失,仍可以维持准确度;

6)它提供一个实验方法,可以去侦测variable interactions;

7)对于不平衡的分类资料集来说,它可以平衡误差;

8)它计算各例中的亲近度,对于数据挖掘、侦测离群点(outlier)和将资料视觉化非常有用;

9)使用上述。它可被延伸应用在未标记的资料上,这类资料通常是使用非监督式聚类。也可侦测偏离者和观看资料;

10)学习过程是很快速的。

四、代码实现

决策树构建等

参考决策树算法

import csv
import numpy as np
import random
import copy
import operator

def loadDataset(filename):
    with open(filename, 'r') as f:
        lines = csv.reader(f)
        data_set = list(lines)
    if filename != 'titanic.csv':
        for i in range(len(data_set)):
            del(data_set[i][0])
    # 整理数据
    for i in range(len(data_set)):
        del(data_set[i][0])
        del(data_set[i][2])
        data_set[i][4] += data_set[i][5]
        del(data_set[i][5])
        del(data_set[i][5])
        del(data_set[i][6])
        del(data_set[i][-1])

    category = data_set[0]

    del (data_set[0])
    # 转换数据格式
    for data in data_set:
        data[0] = int(data[0])
        data[1] = int(data[1])
        if data[3] != '':
            data[3] = float(data[3])
        else:
            data[3] = None
        data[4] = float(data[4])
        data[5] = float(data[5])
    # 补全缺失值 转换记录方式 分类
    for data in data_set:
        if data[3] is None:
            data[3] = 28
        # male : 1, female : 0
        if data[2] == 'male':
            data[2] = 1
        else:
            data[2] = 0
        # age <25 为0, 25<=age<31为1,age>=31为2
        if data[3] < 60: # 但是测试得60分界准确率最高???!!!
            data[3] = 0
        else:
            data[3] = 1
        # sibsp&parcg以2为界限,小于为0,大于为1
        if data[4] < 2:
            data[4] = 0
        else:
            data[4] = 1
        # fare以64为界限
        if data[-1] < 64:
            data[-1] = 0
        else:
            data[-1] = 1
    return data_set, category


def gini(data, i):

    num = len(data)
    label_counts = [0, 0, 0, 0]

    p_count = [0, 0, 0, 0]

    gini_count = [0, 0, 0, 0]

    for d in data:
        label_counts[d[i]] += 1

    for l in range(len(label_counts)):
        for d in data:
            if label_counts[l] != 0 and d[0] == 1 and d[i] == l:
                p_count[l] += 1

    print(label_counts)
    print(p_count)

    for l in range(len(label_counts)):
        if label_counts[l] != 0:
            gini_count[l] = 2*(p_count[l]/label_counts[l])*(1 - p_count[l]/label_counts[l])

    gini_p = 0
    for l in range(len(gini_count)):
        gini_p += (label_counts[l]/num)*gini_count[l]

    print(gini_p)

    return gini_p


def get_best_feature(data, category):
    if len(category) == 2:
        return 1, category[1]

    feature_num = len(category) - 1
    data_num = len(data)

    feature_gini = []

    for i in range(1, feature_num+1):
        feature_gini.append(gini(data, i))

    min = 0

    for i in range(len(feature_gini)):
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值