机器学习(2) ---- 分类问题

本文介绍了机器学习中的分类问题,包括决策树、随机森林、k-近邻(KNN)、Adaboost、支持向量机(SVM)和朴素贝叶斯分类。文章详细阐述了各算法的工作原理,并提供了相关博客链接以供深入学习。
摘要由CSDN通过智能技术生成

机器学习(2) —- 分类问题


个人博客,欢迎参观:http://www.ioqian.top/


1.决策树(Decision Tree)

参考博客: https://www.cnblogs.com/leoo2sk/archive/2010/09/19/decision-tree.html


  根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。

个人总结(不能保证正确),一组数据的特征用向量表示,比如[x1,x2,x3,x4]有4个特征,先通过x1特征分为2类,然后再接着使用x2特征分类,直到终止条件或特征使用完。可以看成把特征串行起来使用。根节点使用什么特征?什么时候终止?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值