《机器学习》—— 随机森林实现二分类问题

一、什么是随机森林

随机森林(Random Forest)是一种集成学习方法,属于监督学习算法,主要用于分类和回归任务。它通过在数据集的多个子集上构建多个决策树,并输出这些树预测结果的众数(对于分类问题)或平均值(对于回归问题)来工作。随机森林以其高准确率不易过拟合以及能够有效评估变量的重要性等特点而广受欢迎。

二、随机森林的主要特点

  • 集成学习:通过结合多个决策树的预测结果来做出最终决策,可以提高模型的泛化能力。
  • 随机性:在构建每棵树时,随机选择部分特征(特征子集)和样本(有放回抽样,称为bootstrap sampling),这有助于减少过拟合并增加模型的多样性。
  • 并行性:由于每棵树的构建是独立的,因此可以并行化计算,提高训练速度。
  • 易于使用和调参:Scikit-learn 提供了易于使用的接口和丰富的参数,使得随机森林模型易于构建和调优。

三、随机森林参数

  • Python中是使用sklearn库中的 sklearn.ensemble 中的 RandomForestClassifier 类来实现随机森林的方法

  • sklearn.ensemble.RandomForestClassifier 中有很多的参数的默认值如下:

    class sklearn.ensemble.RandomForestClassifier(
    	n_estimators=’warn’, criterion=’gini’, max_depth=None, 
    	min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, 
    	max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0, 
    	min_impurity_split=None, bootstrap
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值