【深度学习笔记】
chenriwei2
talk is cheap, show me the code
展开
-
【深度学习笔记】个人阅读的Deep Learning方向的paper整理
转载来源:人阅读的Deep Learning方向的paper整理个人阅读的Deep Learning方向的paper整理,分了几部分吧,但有些部分是有交叉或者内容重叠,也不必纠结于这属于DNN还是CNN之类,个人只是大致分了个类。目前只整理了部分,剩余部分还会持续更新。一 RNN1 Recurrent neural network based language转载 2014-07-23 15:12:01 · 8738 阅读 · 0 评论 -
【深度学习笔记】多层感知机,非权值共享型卷积神经网络,权值共享型卷积神经网络之间的关系
前言:最近学习深度学习,有感写一点总结。我们常常所说的神经网络,一般是指原始的多层感知机,简称MLP,它是在原始感知机堆叠多层而成的,MLP完全由全连接层组成(当然也有激活函数),即Caffe里的IP层。MLP的最大的缺点在于参数众多,比如说我们的网络层为1000--1000--500--20,那么它的总的参数为:1000*1000+1000*500+500*20. 参数过多不好训练,原创 2014-12-04 02:05:19 · 6555 阅读 · 4 评论 -
【深度学习笔记】深度学习用于图片的分类和检测总结
前言: 主要总结一下自己最近看文章和代码的心得。1. CNN用于分类:具体的过程大家都知道,无非是卷积,下采样,激活函数,全连接等。CNN用于分类要求它的输入图片的大小是固定的(其实不单单是CNN,很多其它的方法也是这样的),这是它的一个不足之处之一。目前的大部分CNN都是用来做分类比较多。2. CNN用于检测:主要的方法有两种,细分一下有三种,第一种最为简单和暴力的,原创 2014-12-04 16:42:03 · 7957 阅读 · 1 评论