作为一个退役的CSP-J选手,回想自己考场上就在这题上飞了…这道题送我告别CSP普及…
不扯远了,考虑在同一天将一个物品买一次又卖一次,小伟的钱没有任何变化(这个性质看似是废话,其实很有用),所以我们可以把一次在第i天买的一个物品在第j天卖掉拆成第i天买,第(i+1)天又卖出,第(i+1)天买,第(i+2)天又卖出…直到第(j-1)天买,第j天卖出,中间之所以可以增加买卖且做到与原来的操作等价,是因为前面的那个性质。
于是,只需要将这T天的买卖分开来看:将每次交易进行上文所述的操作后,第k天买的东西第(k+1)天就会卖掉。
所以,从第一天和第二天开始考虑:
第一天刚开始时小伟有M元钱,他能买的东西价格和不超过M,每件东西可以买任意件,买一件物品i因为第二天会卖出所以收益为 p 2 , i p_{2,i} p2,i。
上面的描述,相信然你想到了完全背包。
继续看后面的每一天:除了开始有多少钱你不确定,其他和第一天的情况差别不大,所以也可以用完全背包。
每天完全背包复杂度是 O ( n A n s m a x ) O(nAns_{max}) O(nAnsmax),有T天,所以总复杂度是 O ( T n