CSP2019PJT3

这篇博客回顾了一位CSP-J退役选手在比赛中遇到的一道题目,该题涉及到在同一天内进行一次购买和卖出,保持资金不变的策略。通过将一次交易拆分为连续的买入和卖出,问题转化为每天的完全背包问题。博主详细解释了解题思路,并指出此方法使得每天的交易可以用O(nAnsmax)复杂度处理,总复杂度为O(TnAnsmax),足以应对比赛的计算量要求。
摘要由CSDN通过智能技术生成

作为一个退役的CSP-J选手,回想自己考场上就在这题上飞了…这道题送我告别CSP普及…

不扯远了,考虑在同一天将一个物品买一次又卖一次,小伟的钱没有任何变化(这个性质看似是废话,其实很有用),所以我们可以把一次在第i天买的一个物品在第j天卖掉拆成第i天买,第(i+1)天又卖出,第(i+1)天买,第(i+2)天又卖出…直到第(j-1)天买,第j天卖出,中间之所以可以增加买卖且做到与原来的操作等价,是因为前面的那个性质。

于是,只需要将这T天的买卖分开来看:将每次交易进行上文所述的操作后,第k天买的东西第(k+1)天就会卖掉。

所以,从第一天和第二天开始考虑:

第一天刚开始时小伟有M元钱,他能买的东西价格和不超过M,每件东西可以买任意件,买一件物品i因为第二天会卖出所以收益为 p 2 , i p_{2,i} p2,i

上面的描述,相信然你想到了完全背包。

继续看后面的每一天:除了开始有多少钱你不确定,其他和第一天的情况差别不大,所以也可以用完全背包。

每天完全背包复杂度是 O ( n A n s m a x ) O(nAns_{max}) O(nAnsmax),有T天,所以总复杂度是 O ( T n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值