tang-shopping
码龄6年
关注
提问 私信
  • 博客:140,767
    社区:3,400
    144,167
    总访问量
  • 35
    原创
  • 1,737,928
    排名
  • 181
    粉丝
  • 2
    铁粉

个人简介:做个有用的人!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2019-04-22
博客简介:

tangshopping的博客

查看详细资料
个人成就
  • 获得235次点赞
  • 内容获得272次评论
  • 获得771次收藏
  • 代码片获得221次分享
创作历程
  • 10篇
    2022年
  • 4篇
    2021年
  • 11篇
    2020年
  • 10篇
    2019年
成就勋章
TA的专栏
  • 心得体会
    13篇
  • 学习资料
    2篇
  • 目标检测
    6篇
  • 海思开发
    3篇
  • 海思部署
    5篇
  • 教训与总结
    6篇
  • 经验记录
    26篇
兴趣领域 设置
  • 人工智能
    opencv
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

ubuntu22.04服务器 英伟达 tesla A40安装深度学习环境

从零开始搭建深度学习服务器
原创
发布博客 2022.12.09 ·
1076 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

nanodet-plus阅读:(2)正负样本定义(SimOTA)

nanodet-plus 正负样本定义(simOTA)
原创
发布博客 2022.11.23 ·
388 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

随笔记录:关于SE模块插入位置的总结

SE模块的插入位置探讨
原创
发布博客 2022.08.05 ·
6758 阅读 ·
45 点赞 ·
5 评论 ·
109 收藏

nanodet阅读:(1)概述

nanodet概述
原创
发布博客 2022.06.18 ·
1860 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

nanodet阅读:(3)Loss计算及推理部分

nanodet的阅读笔记
原创
发布博客 2022.06.10 ·
4958 阅读 ·
12 点赞 ·
3 评论 ·
45 收藏

nanodet阅读:(2)正负样本定义(ATSS)

nanodet代码阅读注释
原创
发布博客 2022.06.03 ·
676 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

经验记录:利用传统机器视觉检测 IGBT 车间芯片的好坏

传统视觉 缺陷检测
原创
发布博客 2022.04.22 ·
1203 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

探索发现:自绘DETR结构图

一、 前言最近在看transformer相关的模型,其中vit还好,结构简单,decode与位置编码都没有。看到DETR才觉得比较“齐全”,该有的都有了。怕以后忘记,画个图,帮助记忆,顺便抛砖引玉,如有错误欢迎各位大佬指正。二、 结构图根据官方代码画的,最好是结合代码观看,再结合下面这张图看就更加好理解了。上图是每个encode、deconde模块内部的情况。...
原创
发布博客 2022.03.19 ·
1300 阅读 ·
1 点赞 ·
1 评论 ·
5 收藏

探索发现:记一次深度图像处理的经历

一、 前言2021年底,领导给了个tof模块,要求基于此开发一个演示程序,实现3D人脸识别的功能。当时听他说出3D人脸识别就有点头疼,第一是想自己之前没接触这样的项目;第二是在想3D人脸数据相比于2D人脸数据,恐怕没后者那么多。基于快速开发出产品以及自身能力的想法,向领导建议使用2D+技术路线,即采用rgb图做人脸识别,采用深度图做真假脸识别,领导同意了。rgb图用到的就是些网上开源、成熟的模型,如retinaface、mobileface,这部分不是今天的主题,也没什么好说的,网上博客大把。主要说说深
原创
发布博客 2022.03.09 ·
4553 阅读 ·
6 点赞 ·
0 评论 ·
33 收藏

探索发现:shufflenet 中 shuffle 操作板端部署的可行性

一、前言之前使用shufflenet-nanodet时,思考过它里面的shuffle op的部署,因为很多开发板不支持5 维 tensor,所以python中的shuffle方式,是没法继续使用的,所以就要用其他的思路来做。去年事情多,一直没有空把这个心得记录下来,现在有空了,特此记录,方便自己并抛砖引玉,如有错误,还请指出,谢谢!二、试验(一)思路shufflenet的代码来自nanodet,至于它是否与原版一致,我没去比较。上文说过的,python的shuffle方式没法用,乍一看可能觉得没法
原创
发布博客 2022.03.07 ·
1804 阅读 ·
0 点赞 ·
4 评论 ·
2 收藏

海思开发:Nanodet : onnx -> caffe -> nnie

一、前言应网友所托,帮忙转换 nanodet 模型(注:原版 nanodet 上采样是线性插值法,海思中不支持,换成反卷积了),花了一天多时间思考与尝试,终于搞定它,过程如下。二、主要过程仔细想了下,其实 nanodet 并没有什么生僻的 op,全部是很普通的、常见的那种,但是它们的组合方式以及数据的shape太令人难受了,下面我截图展示一下。1. split 不支持这里说一下,onnx 的 split 在 caffe 里面是 slice,slice 相关博客。相关代码如下:# onnx2ca
原创
发布博客 2021.03.02 ·
3316 阅读 ·
4 点赞 ·
16 评论 ·
22 收藏

菜鸟落泪:Failed to export an ONNX attribute ‘onnx::Gather‘ 报错

一、前言最近在转 mobilenet v3 (pytorch -> onnx)的时候,遇见报错:RuntimeError: Failed to export an ONNX attribute 'onnx::Gather', since it's not constant, please try to make things (e.g., kernel size) static if possible网上搜了一下,发现要么很麻烦,要么不适用,看报错内容,大致就是说,有个op的属性值不是常量。
原创
发布博客 2021.01.28 ·
4697 阅读 ·
17 点赞 ·
7 评论 ·
16 收藏

海思开发:海思上对 relu6、hswish、h-sigmoid 移植的探索

一、前言最近在搞 mobilenet v3,v3有两个非线性函数:hswish 和 h-sigmoid,二者都用到了relu6,之前都是把它们替换,因为海思没有现成的relu6。当时就在想,能否利用现有op,组合成想要的relu6出来了? 这个想法在脑子里徘徊几天了,今天试着给它变现,结果如下。
原创
发布博客 2021.01.23 ·
5333 阅读 ·
11 点赞 ·
20 评论 ·
22 收藏

海思开发:relu、relu6 在量化前后的精度变化及原因思考

一、前言以前部署 HopeNet 的时候,发现了relu6与relu的差异。具体就是 relu 模型量化后精度下降 14%,relu6 模型量化后精度下降 2.5%。这两个模型除了 backbone、激活函数不一样,其他都一样。所以 relu6 可以减少量化精度损失?因为上面两个模型backbone不一样,所以考虑再进行一个条件更严格的对比实验。二、实验特意选了 MobileNet v2,它的激活函数刚好是 relu6,数据集类别数是 2,数据集大小为正负类各 500个。我们训练两款模型 Mobile
原创
发布博客 2021.01.22 ·
7499 阅读 ·
13 点赞 ·
0 评论 ·
42 收藏

探索发现:tensorflow转onnx时,输入无符号shape的情况解决。

一、前言如标题,有几次朋友遇到这种情况,所以我想看看能不能直接更改 onnx 模型的 input shape 来解决这种问题。这种情况目前全发生在 tensorflow -> onnx 过程中,pytorch 由于有 onnx 的导出官方 api, 所以没有此烦心事。二、代码先看看未修改前输入的无符号shape:很明显,本该是1的地方出现了几个乱七八糟的符号。但是怎么做呢?参考这个,在最下面处有解决方法。from onnx.tools import update_model_dimsi
原创
发布博客 2020.12.28 ·
1452 阅读 ·
0 点赞 ·
1 评论 ·
6 收藏

菜鸟落泪:win10 离线安装 pytorch 及其所需依赖包

如题,亲测成功,所需依赖包为:certifi 2020.11.8cffi 1.14.4dataclasses 0.8future 0.18.0icc-rt 2019.0intel-openmp 2021.1.1mkl 2019.0mkl-fft 1.0.6mkl-ran
原创
发布博客 2020.12.21 ·
1993 阅读 ·
2 点赞 ·
2 评论 ·
9 收藏

海思开发:yolo v5的 focus层 移植到海思上的方法

一、前言经网友提醒,yolo v2的 passthrough 层与 v5 的 focus 层很像,因为海思是支持 passthrough 层的,鉴于此,花了点时间了解了一下,提出一些浅见,抛砖引玉。二、区别上文我说的是,二者很像,说明它们还是有区别的,现在说说区别。1. passthrough 层出于严谨,结合海思文档图片与 passthrough 源码来一起理解,先看看 passthrough 源码:// 它的源码是 c++ 的,不是 python 格式int reorg_cpu(THFlo
原创
发布博客 2020.12.15 ·
7617 阅读 ·
20 点赞 ·
40 评论 ·
61 收藏

海思开发:mobilefacenet 模型: pytorch -> onnx -> caffe -> nnie

一、前言最近有空,把之前的项目梳理记录一下,惠已惠人。二、详情人脸模型是在 pytorch 下训练的,工程文件用的是这个:MobileFaceNet_Tutorial_Pytorch训练完成之后,先转为onnx模型并做简化,代码如下:def export_onnx(): import onnx parser = argparse.ArgumentParser() #parser.add_argument('--weights', type=str, default=r'F:
原创
发布博客 2020.12.03 ·
5180 阅读 ·
17 点赞 ·
11 评论 ·
36 收藏

海思开发:yolo v5s :pytorch->onnx->caffe->nnie

一、前言主要是遇见几个问题,赶紧记录一下,免得后面兄弟们吃同样的亏。二、过程1. 报错:Reshape dimention number shall be 2 or 4仔细看了一下,和我 reshape 处理的数据维度有关,而转换代码里 reshape 最高支持维度数是 4。而我的数据shape 是 (1, 3, H, W, class_num + 5),这是个五维数组。本来就想在后面加个条件 : len(shape) == 5,又怕出现新的错误,上网找了篇其他的转换代码,点进去看了下,发现
原创
发布博客 2020.11.28 ·
16707 阅读 ·
38 点赞 ·
134 评论 ·
131 收藏

海思开发:python下转换图片为bgr_planner格式

前言模型转换后,性能多多少少都有点损失,为了评估肯定需要在海思上跑个数据集,但是海思的图片输入格式是bgr_planner格式,所以需要对图片做个格式转换。对于大神来说,直接全用c/c++完成,但本菜逼只能选择这种two-stage方式了。代码废话不多说,代码都是经过试验,确定能跑的通的。为了放心,特意还做了个试验,同一张图片用python转为bgr_planner格式,和用c++转为bgr_planner格式,再先后喂入人脸识别模型,最后的输出特征值差了0.05左右。import cv2impo
原创
发布博客 2020.10.16 ·
1243 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏
加载更多