大数据面试要点归纳总结

本文总结了大数据面试的关键要点,涵盖了数据仓库的架构、分层设计、数据模型及其重要性,强调了星型和雪花模型的区别。文章还讨论了Hadoop的HDFS HA、Zookeeper选举机制以及YARN的资源调度机制。此外,Hive的性能优化策略,如解决数据倾斜和小文件问题,以及Flink的exactly-once语义和Kafka的数据不丢失保障措施也被提及。同时,文章还涵盖了数据结构中的排序算法和网络基础知识,如HTTP协议的工作原理。
摘要由CSDN通过智能技术生成

1.数据仓库

架构(大数据平台基于hadoop+hive+kafka)

数据缓冲区(ODS)的数据结构与源系统完全一致。基础数据模型(DWD)和汇总层DWM(轻度汇总与高度汇总)是大数据平台重点建设的数据模型。集市层DWS(DM)模型由各主题按需自行建设,其中基础数据层DWD模型一般采用ER模型,DWM采用维度建模思路,主题分析DWS(DM)。应用层APP,一般是mysql/hbase/reids/clickhouse.

为什么要分层?

数据仓库一般要进行分层的设计,其能带来五大好处:
清晰数据结构:每一个数据分层都有它的作用域,这样我们在使用表的时候能更方便地定位和理解。
数据血缘追踪:能够快速准确地定位到问题,并清楚它的危害范围。
减少重复开发:规范数据分层,开发一些通用的中间层数据,能够减少极大的重复计算。
把复杂问题简单化:将复杂的任务分解成多个步骤来完成,每一层只处理单一的步骤,比较简单和容易理解。当数据出现问题之后,不用修复所有的数据,只需要从有问题的步骤开始修复。
屏蔽原始数据的异常:不必改一次业务就需要重新接入数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科学的N次方

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值