深度学习
文章平均质量分 61
chentao326
这个作者很懒,什么都没留下…
展开
-
【目标检测·yolo系列】YOLOV3目标检测论文笔记(参考 同济子豪兄的解读)
目录骨干网络 Darknet53后面的论文算法架构都是在yolov3基础上更新来的骨干网络 Darknet53由于主要网络中是全卷积层,所以是可以输入任意大小的图片(得是×32)原创 2021-09-19 17:49:46 · 701 阅读 · 0 评论 -
【目标检测·yolo系列】YOLOV2目标检测论文笔记(参考 同济子豪兄的解读)
目录anchor 、 Dimension Clusters 、Direct location prediction在YOLOv2中规定了五种anchor,grid cell数量为奇数限制预测框位置损失函数细粒度特征Multi-Scale Traininganchor 、 Dimension Clusters 、Direct location prediction在YOLOv1中先验框是随机的,在YOLOv2中规定了两个先验框,如下图如图,①框擅长套高瘦长的物体,②框擅长矮胖宽的物体由此可以使得模型原创 2021-09-18 16:48:54 · 1182 阅读 · 0 评论 -
【目标检测·yolo系列】YOLOV1目标检测论文(参考 同济子豪兄的解读)笔记
YOLO V1目标检测 object detectionYOLOV1预测阶段 前向推断用图展示过程预测阶段 后处理NMS Non-Maximum Suppression 非极大值抑制训练阶段 反向传播目标检测 object detection能够解决图像分类classification、图像定位localization、目标检测object detection、图像分割segmentation图像分割——语义分割semantic segmention、实例分割 instance segmention原创 2021-08-23 17:23:25 · 1293 阅读 · 0 评论 -
【神经网络 | 深度学习】pytorch快速搭建CNN网络
定义网络类每一层卷积层由卷积核、池化和激活函数组成一般情况下最后一层是全连接层def __init__(self): super(CNNNET,self).__init__() self.con1 = nn.Sequential( nn.Conv2d(3,64,3,1,1), #3*128*128-->64*128*128 #3个输入,64输出(即卷积核),卷积核大小为3*3或者(3,3),原创 2021-05-31 18:01:48 · 372 阅读 · 0 评论 -
【神经网络 | 深度学习】pytorch快速搭建网络
快速搭建导入包torch.nn包含了大量和网络相关的方法import torchimport torch.nn as nn使用GPU计算device = torch.device('cuda' if torch.cuda.is_available else 'cpu')device = torch.device('cuda:0')用第一块显卡计算,就一块显卡的话,传入'cuda'设立输入和输出torch.Tensor()直接建立张量,.to(device)表示使用CPU或者GPU计算原创 2021-05-31 17:50:33 · 211 阅读 · 1 评论