光照变化是影响人脸识别性能的最关键因素。然后进行针对性的光照补偿,以便消除非均匀正面光照造成的阴影、高光等影响;在计算机系统中,由于显卡或者显示器的原因会出现实际输出的图像在亮度上有偏差,而Gamma曲线矫正就是通过一定的方法来矫正图像的这种偏差的方法。一般情况下,当用于Gamma矫正的值大于1时,图像的高光部分被压缩而暗调部分被扩展,当Gamma矫正的值小于1时,图像的高光部分被扩展而暗调部分被压缩,Gamma矫正一般用于平滑的扩展暗调的细节。光照变化是影响系统识别性能的关键因素之一,由于人脸的3D结构,光照投射出的阴影,会加强或减弱原有的人脸特征。尤其是在夜晚,由于光线不足造成的面部阴影会导致识别率的急剧下降,使得系统难以满足实用要求。同时,理论和实验还证明同一个体因光照不同引起的差异,大于同一光照下不同个体之间的差异。因此,如果能探索到合适的方法对光照过强或过弱的人脸图像进行预处理,对于改善人脸识算法性能具有一定意义。
2、基于光照子空间模型的任意光照图像生成算法,用于生成多个不同光照条件的训练样本。
数据库
Yale Face Database B[1] :该数据库共包含l0个人的9种不同姿态的人脸图像,每种姿态又包含64种不同的光照情况。由于采集人数较少,限制了该数据库的进一步应用。
The extended Yale Face Database B[2] :包含28个人的9种姿态,每种姿态包含64种不同光照。
Havard[3] :该库包括10个人,每人66幅人脸。库中包括5种不同光照方向。
CMU-PIE[4] :包含8位志愿者的41,368张多姿态,光照和表情的面部图像。其中的姿态和光照变化图像也是在严格控制的条件下采集的。
FERET[5] :由FERET项目创建,包含14,051张多姿态、光照的灰度人脸图像,是人脸识别领域应用最广泛的人脸数据库之一。其中的多数人是西方人,每个人所包含的人脸图像的变化比较单一。
ORL[6] :由剑桥大学AT&T实验室创建,含40人共400张面部图像,部分志愿者的图像包括了姿态,表情和面部饰物的变化。该人脸库在人脸识别研究的早期经常被人们采用,但多数系统的识别率均可以达到90%以上,因此进一步利用的价值已经不大。
XM2VTS[7] :包含了295人在4个不同时间段的图像和语音视频片断。在每个时间段,每人被记录了2个头部旋转的视频片断和6个语音视频片断。此外,其中的293人的3维模型也可得到。