Pytorch入门-day1-quick start(1)

Pytorch入门-day1-(1)

工欲善其事,必先利其器

以下分几个方面来展开学习

工具

资源

1pytorch1.7apache翻译-中文文档

网站

Pytorch官网:在这有最全的文档,和博客教学,主要资源来自于此

由主网站 延伸的子网站

  1. tutorials一切以官方教程开始,主要看quick start
  2. pytorch-cn中文文档这个纯当参考,感觉不咋地
  3. pytorch 在github上的ApacheCN 翻译中文版,正校验1.7版本:注:此时Pytorch官方已经更新到了1.8.1稳定版,nightly版本是1.9版本
  4. 1.7文档地址:注 这个就是官方resources中的学习资源
  5. apacheCN官网

在Google Colab中运行代码

本机环境已装

Pytorch 1.8 gpu cudatoolkit 10.2.89
torchvision 0.9
torchaudio 0.8.0

怎么学

快速开始吧

处理数据

PyTorch有两个处理数据的原语:
torch.utils.data.DataLoader和torch.utils.data.Dataset。

Dataset存储样本及其相应的标签,并DataLoader在Dataset之外包裹一个可迭代的对象。

注: DataLoader 是一个包含Dataset类型的可迭代对象,Dataset包含样本和对应标签

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose
import matplotlib.pyplot as plt

PyTorch提供了特定领域的库,例如TorchText, TorchVision和TorchAudio,所有这些库都包含数据集。在本教程中,我们将使用TorchVision数据集。

该torchvision.datasets模块包含Dataset许多现实世界的视觉数据的对象,例如CIFAR,COCO(在此完整列表)。在本教程中,我们使用FashionMNIST数据集。每个TorchVision 的Dataset包含两个参数:transform和 target_transform分别修改样本和标签。

# Download training data from open datasets.
training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
)

# Download test data from open datasets.
test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor(),
)

我们将Dataset当作参数传递给DataLoader。这在我们的数据集上包装了一个可迭代的对象,并支持自动批处理,采样,改组和多进程数据加载。在这里,我们将批处理大小定义为64,即,可迭代的数据加载器中的每个元素将返回一批64个功能部件和标签。

batch_size = 64

# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)

for X, y in test_dataloader:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

output:

Shape of X [N, C, H, W]:  torch.Size([64, 1, 28, 28])
Shape of y:  torch.Size([64]) torch.int64

创建模型

为了在PyTorch中定义一个神经网络,我们创建了一个从nn.Module继承的类。我们在__init__函数中定义网络的层,并在函数中指定数据如何通过网络forward。为了加速神经网络中的操作,我们将其移至GPU(如果有)。

# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

# Define model
class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
            nn.ReLU()
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

model = NeuralNetwork().to(device)
print(model)

output:

Using cuda device
NeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_relu_stack): Sequential(
    (0): Linear(in_features=784, out_features=512, bias=True)
    (1): ReLU()
    (2): Linear(in_features=512, out_features=512, bias=True)
    (3): ReLU()
    (4): Linear(in_features=512, out_features=10, bias=True)
    (5): ReLU()
  )
)	

阅读有关在PyTorch中构建神经网络的更多信息。

优化模型参数

要训​​练模型,我们需要损失函数 和优化器。

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)

在单个训练循环中,模型对训练数据集进行预测(分批进给),然后反向传播预测误差以调整模型的参数。

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    for batch, (X, y) in enumerate(dataloader):
        X, y = X.to(device), y.to(device)

        # Compute prediction error
        pred = model(X)
        loss = loss_fn(pred, y)

        # Backpropagation
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if batch % 100 == 0:
            loss, current = loss.item(), batch * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")

我们还将对照测试数据集检查模型的性能,以确保模型正在学习。

def test(dataloader, model):
    size = len(dataloader.dataset)
    model.eval()
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()
    test_loss /= size
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

训练过程是在几个迭代(历元)上进行的。在每个时期,模型都会学习参数以做出更好的预测。我们在每个时期打印模型的准确性和损失;我们希望看到每个时期的精度都会提高而损耗会降低。

epochs = 5
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(train_dataloader, model, loss_fn, optimizer)
    test(test_dataloader, model)
print("Done!")

output:

Epoch 1
-------------------------------
loss: 2.308457  [    0/60000]
loss: 2.297256  [ 6400/60000]
loss: 2.278359  [12800/60000]
loss: 2.269392  [19200/60000]
loss: 2.253581  [25600/60000]
loss: 2.241885  [32000/60000]
loss: 2.246830  [38400/60000]
loss: 2.230555  [44800/60000]
loss: 2.213488  [51200/60000]
loss: 2.188743  [57600/60000]
Test Error:
 Accuracy: 54.0%, Avg loss: 0.034381

Epoch 2
-------------------------------
loss: 2.202937  [    0/60000]
loss: 2.185693  [ 6400/60000]
loss: 2.149241  [12800/60000]
loss: 2.154213  [19200/60000]
loss: 2.099240  [25600/60000]
loss: 2.102819  [32000/60000]
loss: 2.114654  [38400/60000]
loss: 2.083009  [44800/60000]
loss: 2.061793  [51200/60000]
loss: 2.008113  [57600/60000]
Test Error:
 Accuracy: 57.0%, Avg loss: 0.031586

Epoch 3
-------------------------------
loss: 2.048800  [    0/60000]
loss: 1.998590  [ 6400/60000]
loss: 1.930384  [12800/60000]
loss: 1.953652  [19200/60000]
loss: 1.835590  [25600/60000]
loss: 1.882969  [32000/60000]
loss: 1.886603  [38400/60000]
loss: 1.849273  [44800/60000]
loss: 1.824851  [51200/60000]
loss: 1.732873  [57600/60000]
Test Error:
 Accuracy: 57.2%, Avg loss: 0.027470

Epoch 4
-------------------------------
loss: 1.822591  [    0/60000]
loss: 1.732545  [ 6400/60000]
loss: 1.642681  [12800/60000]
loss: 1.684417  [19200/60000]
loss: 1.529449  [25600/60000]
loss: 1.654818  [32000/60000]
loss: 1.630370  [38400/60000]
loss: 1.631863  [44800/60000]
loss: 1.588262  [51200/60000]
loss: 1.471685  [57600/60000]
Test Error:
 Accuracy: 59.4%, Avg loss: 0.023740

Epoch 5
-------------------------------
loss: 1.611129  [    0/60000]
loss: 1.502379  [ 6400/60000]
loss: 1.409730  [12800/60000]
loss: 1.466273  [19200/60000]
loss: 1.297876  [25600/60000]
loss: 1.489053  [32000/60000]
loss: 1.437142  [38400/60000]
loss: 1.483427  [44800/60000]
loss: 1.416397  [51200/60000]
loss: 1.301810  [57600/60000]
Test Error:
 Accuracy: 61.4%, Avg loss: 0.021151

Done!

了解有关训练模型的更多信息。

保存模型

保存模型的常用方法是序列化内部状态字典(包含模型参数)。

torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")
Saved PyTorch Model State to model.pth

加载模型

加载模型的过程包括重新创建模型结构并将状态字典加载到其中。

model = NeuralNetwork()
model.load_state_dict(torch.load("model.pth"))

现在可以使用该模型进行预测。

classes = [
    "T-shirt/top",
    "Trouser",
    "Pullover",
    "Dress",
    "Coat",
    "Sandal",
    "Shirt",
    "Sneaker",
    "Bag",
    "Ankle boot",
]

model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
    pred = model(x)
    predicted, actual = classes[pred[0].argmax(0)], classes[y]
    print(f'Predicted: "{predicted}", Actual: "{actual}"')
Predicted: "Ankle boot", Actual: "Ankle boot"	

阅读有关保存和加载模型的更多信息。

代码执行逻辑



torch-------nn

torchvision.datasets

Dataset
	transform
	target_transform
---------------------------------基本数据操作
datasets.FashionMNIST

DataLoader()

torchvision ------------datasets
datasets.xxx( train=True,transform=ToTensor())---------training_data
datasets.xxx( train=False,transform=ToTensor())---------training_data


 torch.utils.data----------有DataLoader


 DataLoader(training_data,batch_size = ?)for  in  中运行DataLoader迭代器
查看不同sample中的shape 和type

torchvision.transforms-------ToTensor, Lambda, Compose
-------------------------类与继承
__init__中定义层
def __init__(self):
	super(xxx,self).__init__()
	self.flatten = nn.Flatten()
	self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
            nn.ReLU()
        )

函数-定义forward
 def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits


# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))  

      
.to(device)
model = NeuralNetwork().to(device)
print(model)


总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值